已知拋物線上任意一點到焦點F的距離比到軸的距離大1,

   (1)求拋物線C的方程;

   (2)過焦點F的直線與拋物線交于A、B兩點,求面積的最小值。

   (3)過點的直線交拋物線于P、Q兩點,設(shè)點P關(guān)于軸的對稱點為R,求證:直線RQ必過定點.

 

 

 

 

 

 

 

 

【答案】

 解析:(1)設(shè)為拋物線上一點,作軸,垂足為H,連接PF,因,所求拋物線C的方程為;------------4分

   (2)由(1)可得焦點坐標(biāo)為,易得:當(dāng)斜率不存在時,取最小值分

   (3)因A,設(shè)聯(lián)立得,又因點P關(guān)于軸的對稱點為R,則,

    因此直線RQ的方程為,

    即有

    因此有,因

    所以直線RQ必過定點.             ------------15分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線上任意一點到焦點F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點F的直線交拋物線于M,N兩點,M在第一象限,且,求直線MN的方程;(3)過點的直線交拋物線于P、Q兩點,設(shè)點P關(guān)于軸的對稱點為R,求證:直線RQ必過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年湖南長沙重點中學(xué)高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.

(Ⅰ)求,的方程;

(Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試(北京卷理科) 題型:解答題

已知拋物線上任意一點到焦點F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點F的直線交拋物線于M,N兩點,M在第一象限,且,求直線MN的方程;(3)過點的直線交拋物線于P、Q兩點,設(shè)點P關(guān)于軸的對稱點為R,求證:直線RQ必過定點.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008年普通高等學(xué)校招生全國統(tǒng)一考試?yán)砜茢?shù)學(xué)(寧夏卷) 題型:解答題

已知拋物線上任意一點到焦點F的距離比到軸的距離大1,(1)求拋物線C的方程;(2)若過焦點F的直線交拋物線于M,N兩點,M在第一象限,且,求直線MN的方程;(3)過點的直線交拋物線于P、Q兩點,設(shè)點P關(guān)于軸的對稱點為R,求證:直線RQ必過定點.

 

查看答案和解析>>

同步練習(xí)冊答案