【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長(zhǎng)度單位,已知曲線的參數(shù)方程為,(為參數(shù),且),曲線的極坐標(biāo)方程為

)求的極坐標(biāo)方程與的直角坐標(biāo)方程.

)若上任意一點(diǎn),過(guò)點(diǎn)的直線于點(diǎn),,求的取值范圍.

【答案】(1),;(2)

【解析】試題分析:)消去參數(shù),即可得到的普通方程,再根據(jù)極坐標(biāo)與直角坐標(biāo)的互化公式,即可得到的極坐標(biāo)方程,同理可得的直角坐標(biāo)方程;

)設(shè),把直線的參數(shù)方程代入曲線的方程,利用直線參數(shù)的幾何意義,即可得到的取值范圍.

試題解析:

)消去參數(shù)可得,由,則,

∴曲線軸上方的部分,

∴曲線的極坐標(biāo)方程為,

曲線的直角坐標(biāo)方程為

)設(shè),則,直線的傾斜角為,則直線的參數(shù)方程為:

為參數(shù)),

代入的直角坐標(biāo)方程得,

由直線參數(shù)方程中的幾何意義可知,

因?yàn)?/span>

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱中,底面為等腰梯形,.

(1)證明:

(2)設(shè)是線段上的動(dòng)點(diǎn),是否存在這樣的點(diǎn),使得二面角的余弦值為,如果存在,求出的長(zhǎng);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2018屆寧夏育才中學(xué)高三上學(xué)期期末】某公司為了解廣告投入對(duì)銷(xiāo)售收益的影響,在若干地區(qū)各投入萬(wàn)元廣告費(fèi)用,并將各地的銷(xiāo)售收益繪制成頻率分布直方圖(如圖所示),由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開(kāi)始計(jì)數(shù)的.

1)根據(jù)頻率分布直方圖計(jì)算圖中各小長(zhǎng)方形的寬度;

2)試估計(jì)該公司投入萬(wàn)元廣告費(fèi)用之后,對(duì)應(yīng)銷(xiāo)售收益的平均值(以各組的區(qū)間中點(diǎn)值代表該組的取值);

3)該公司按照類(lèi)似的研究方法,測(cè)得另外一些數(shù)據(jù),并整理得到下表:

由表中的數(shù)據(jù)顯示, 之間存在著線性相關(guān)關(guān)系,請(qǐng)將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.

參考公式:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】揚(yáng)州大學(xué)數(shù)學(xué)系有6名大學(xué)生要去甲、乙兩所中學(xué)實(shí)習(xí),每名大學(xué)生都被隨機(jī)分配到兩所中學(xué)的其中一所.

(1)求6名大學(xué)生中至少有1名被分配到甲學(xué)校實(shí)習(xí)的概率;

(2)設(shè)分別表示分配到甲、乙兩所中學(xué)的大學(xué)生人數(shù),記,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某快餐代賣(mài)店代售多種類(lèi)型的快餐,深受廣大消費(fèi)者喜愛(ài).其中,種類(lèi)型的快餐每份進(jìn)價(jià)為元,并以每份元的價(jià)格銷(xiāo)售.如果當(dāng)天20:00之前賣(mài)不完,剩余的該種快餐每份以元的價(jià)格作特價(jià)處理,且全部售完.

(1)若該代賣(mài)店每天定制種類(lèi)型快餐,求種類(lèi)型快餐當(dāng)天的利潤(rùn)(單位:元)關(guān)于當(dāng)天需求量(單位:份,)的函數(shù)解析式;

(2)該代賣(mài)店記錄了一個(gè)月天的種類(lèi)型快餐日需求量(每天20:00之前銷(xiāo)售數(shù)量)

日需求量

天數(shù)

(i)假設(shè)代賣(mài)店在這一個(gè)月內(nèi)每天定制種類(lèi)型快餐,求這一個(gè)月種類(lèi)型快餐的日利潤(rùn)(單位:元)的平均數(shù)(精確到);

(ii)若代賣(mài)店每天定制種類(lèi)型快餐,以天記錄的日需求量的頻率作為日需求量發(fā)生的概率,求種類(lèi)型快餐當(dāng)天的利潤(rùn)不少于元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校的特長(zhǎng)班有名學(xué)生,其中有體育生名,藝術(shù)生名,在學(xué)校組織的一次體檢中,該班所有學(xué)生進(jìn)行了心率測(cè)試,心率全部介于次/分到次/分之間.現(xiàn)將數(shù)據(jù)分成五組,第一組,第二組,…,第五章,按上述分組方法得到的頻率分布直方圖如圖所示,已知圖中從左到右的前三組的頻率之比為.

(1)求的值,并求這名同學(xué)心率的平均值;

(2)因?yàn)閷W(xué)習(xí)專(zhuān)業(yè)的原因,體育生常年進(jìn)行系統(tǒng)的身體鍛煉,藝術(shù)生則很少進(jìn)行系統(tǒng)的身體鍛煉,若從第一組和第二組的學(xué)生中隨機(jī)抽取一名,該學(xué)生是體育生的概率為,請(qǐng)將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為心率小于次/分與常年進(jìn)行系統(tǒng)的身體鍛煉有關(guān)?說(shuō)明你的理由.

心率小于60次/分

心率不小于60次/分

合計(jì)

體育生

20

藝術(shù)生

30

合計(jì)

50

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)性;

(Ⅱ)當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù). 若曲線y=在點(diǎn)P(e,f(e))處的切線方程為y=2x-e(為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若,試比較的大小,并予以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了推動(dòng)數(shù)學(xué)教學(xué)方法的改革,學(xué)校將高一年級(jí)部分生源情況基本相同的學(xué)生分成甲、乙兩個(gè)班,每班各40人,甲班按原有模式教學(xué),乙班實(shí)施教學(xué)方法改革.經(jīng)過(guò)一年的教學(xué)實(shí)驗(yàn),將甲、乙兩個(gè)班學(xué)生一年來(lái)的數(shù)學(xué)成績(jī)?nèi)∑骄鶖?shù)再取整,繪制成如下莖葉圖,規(guī)定不低于85分(百分制)為優(yōu)秀,甲班同學(xué)成績(jī)的中位數(shù)為74.

(1)求的值和乙班同學(xué)成績(jī)的眾數(shù);

(2)完成表格,若有以上的把握認(rèn)為“數(shù)學(xué)成績(jī)優(yōu)秀與教學(xué)改革有關(guān)”的話,那么學(xué)校將擴(kuò)大教學(xué)改革面,請(qǐng)問(wèn)學(xué)校是否要擴(kuò)大改革面?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案