【題目】已知△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且.
(1)求A;
(2)若,求△ABC的面積S的最大值.
【答案】(1)A(2)
【解析】
(1)利用整下定理,三角函數(shù)的恒等變換,集合,求得,即可求解;
(2)由余弦定理,基本不等式求得的最大值,進(jìn)而根據(jù)三角形的面積公式,即可求解三角形的最大面積.
(1)由題意,在中,,
由正弦定理得,
又由,
可得
所以,
即cosAsinCsinCsinA,
又因?yàn)?/span>sinC≠0,所以cosAsinA,可得tanA,
又由A∈(0,π),∴A.
(2)由余弦定理可得cosA,
可得b2+c2﹣3bc,
因?yàn)?/span>b2+c2≥2bc,所以3bc≥2bc,可得bc3(2),
所以三角形的面積Sbcsin,當(dāng)且僅當(dāng)b=c等號成立,
所以△ABC的面積S的最大值.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國和印度是當(dāng)今世界上兩個發(fā)展最快且是最大的發(fā)展中國家,為了解兩國經(jīng)濟(jì)的發(fā)展情況,收集了2008年至2017年兩國GDP年度增長率,并繪制成如圖折線圖,則下列結(jié)論不正確的是( )
A.2010年,兩國GDP年度增長率均為最大
B.2014年,兩國GDP年度增長率幾乎相等
C.這十年內(nèi),中國比印度的發(fā)展更為平穩(wěn)一些
D.2015年起,印度GDP年度增長率均比中國大
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓,離心率,短軸,拋物線頂點(diǎn)在原點(diǎn),以坐標(biāo)軸為對稱軸,焦點(diǎn)為,
(1)求橢圓和拋物線的方程;
(2)設(shè)坐標(biāo)原點(diǎn)為,為拋物線上第一象限內(nèi)的點(diǎn),為橢圓是一點(diǎn),且有,當(dāng)線段的中點(diǎn)在軸上時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐中,底面是邊長為的正三角形,點(diǎn)在底面上的射影恰是的中點(diǎn),側(cè)棱和底面成角.
(1)若為側(cè)棱上一點(diǎn),當(dāng)為何值時,;
(2)求二面角的余弦值大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E為正方形ABCD邊CD上異于點(diǎn)C、D的動點(diǎn),將△ADE沿AE翻折成△SAE,在翻折過程中,下列三個說法中正確的個數(shù)是( )
①存在點(diǎn)E和某一翻折位置使得AE∥平面SBC;
②存在點(diǎn)E和某一翻折位置使得SA⊥平面SBC;
③二面角S﹣AB﹣E的平面角總是小于2∠SAE.
A.0B.1C.2D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義在R上的函數(shù)滿足,且對任意的都有其中為的導(dǎo)數(shù),則下列一定判斷正確的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)定義:設(shè)是非零實(shí)常數(shù),若對于任意的,都有,則稱函數(shù)為“關(guān)于的偶型函數(shù)”
(1)請以三角函數(shù)為例,寫出一個“關(guān)于2的偶型函數(shù)”的解析式,并給予證明
(2)設(shè)定義域?yàn)榈摹瓣P(guān)于的偶型函數(shù)”在區(qū)間上單調(diào)遞增,求證在區(qū)間上單調(diào)遞減
(3)設(shè)定義域?yàn)?/span>的“關(guān)于的偶型函數(shù)”是奇函數(shù),若,請猜測的值,并用數(shù)學(xué)歸納法證明你的結(jié)論
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】至年底,我國發(fā)明專利申請量已經(jīng)連續(xù)年位居世界首位,下表是我國年至年發(fā)明專利申請量以及相關(guān)數(shù)據(jù).
注:年份代碼~分別表示~.
(1)可以看出申請量每年都在增加,請問這幾年中哪一年的增長率達(dá)到最高,最高是多少?
(2)建立關(guān)于的回歸直線方程(精確到),并預(yù)測我國發(fā)明專利申請量突破萬件的年份.
參考公式:回歸直線的斜率和截距的最小二乘法估計(jì)分別為,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標(biāo)點(diǎn)O為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρcos(θ+)=1.
(1)求直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)已知點(diǎn)M (2,0),若直線l與曲線C相交于P、Q兩點(diǎn),求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com