【題目】函數(shù),且恒成立.
(1)求實數(shù)的集合;
(2)當(dāng)時,判斷圖象與圖象的交點個數(shù),并證明.
(參考數(shù)據(jù):)
【答案】(1);(2)2個,證明見解析
【解析】
(1)要恒成立,只要的最小值大于或等于零即可,所以只要討論求解看是否有最小值;
(2)將圖像與圖像的交點個數(shù)轉(zhuǎn)化為方程實數(shù)解的個數(shù)問題,然后構(gòu)造函數(shù),再利用導(dǎo)數(shù)討論此函數(shù)零點的個數(shù).
(1)的定義域為,因為,
1°當(dāng)時,在上單調(diào)遞減,時,使得,與條件矛盾;
2°當(dāng)時,由,得;由,得,所以在上單調(diào)遞減,在上單調(diào)遞增,即有,由恒成立,所以恒成立,令,
若;
若;而時,,要使恒成立,
故.
(2)原問題轉(zhuǎn)化為方程實根個數(shù)問題,
當(dāng)時,圖象與圖象有且僅有2個交點,理由如下:
由,即,令,
因為,所以是的一根;,
1°當(dāng)時,,
所以在上單調(diào)遞減,,即在上無實根;
2°當(dāng)時,,
則在上單調(diào)遞遞增,又,
所以在上有唯一實根,且滿足,
①當(dāng)時,在上單調(diào)遞減,此時在上無實根;
②當(dāng)時,在上單調(diào)遞增,
,故在上有唯一實根.
3°當(dāng)時,由(1)知,在上單調(diào)遞增,
所以,
故,所以在上無實根.
綜合1°,2°,3°,故有兩個實根,即圖象與圖象有且僅有2個交點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=CD=1.現(xiàn)以AD為一邊向梯形外作正方形ADEF,然后沿邊AD將正方形ADEF翻折,使平面ADEF與平面ABCD垂直,M為ED的中點,如圖②.
(1)求證:AM∥平面BEC;
(2)求點D到平面BEC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),直線與曲線交于兩點.
(1)求的長;
(2)在以為極點,軸的正半軸為極軸建立的極坐標系中,設(shè)點的極坐標為,求點到線段中點的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,,)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中正確的是( )
A. 函數(shù)圖象的對稱軸方程為
B. 函數(shù)的最大值為2
C. 函數(shù)的圖象上存在點,使得在點處的切線與直線平行
D. 若函數(shù)的兩個不同零點分別為,,則最小值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是國家統(tǒng)計局于2020年1月9日發(fā)布的2018年12月到2019年12月全國居民消費價格的漲跌幅情況折線圖.(注:同比是指本期與同期作對比;環(huán)比是指本期與上期作對比.如:2019年2月與2018年2月相比較稱同比,2019年2月與2019年1月相比較稱環(huán)比)根據(jù)該折線圖,下列結(jié)論錯誤的是( )
A.2019年12月份,全國居民消費價格環(huán)比持平
B.2018年12月至2019年12月全國居民消費價格環(huán)比均上漲
C.2018年12月至2019年12月全國居民消費價格同比均上漲
D.2018年11月的全國居民消費價格高于2017年12月的全國居民消費價格
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的圖象經(jīng)過點.
(1)求拋物線的方程和焦點坐標;
(2)直線交拋物線于,不同兩點,且,位于軸兩側(cè),過點,分別作拋物線的兩條切線交于點,直線,與軸的交點分別記作,.記的面積為,面積為,面積為,試問是否為定值,若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(,t為參數(shù)).以坐標原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.
(1)求直角坐標系下直線與曲線的普通方程;
(2)設(shè)直線與曲線交于點、(二者可重合),交軸于,若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】新型冠狀病毒肺炎疫情爆發(fā)以來,疫情防控牽掛著所有人的心. 某市積極響應(yīng)上級部門的號召,通過沿街電子屏、微信公眾號等各種渠道對此戰(zhàn)“疫”進行了持續(xù)、深入的懸窗,幫助全體市民深入了解新冠狀病毒,增強戰(zhàn)勝疫情的信心. 為了檢驗大家對新冠狀病毒及防控知識的了解程度,該市推出了相關(guān)的知識問卷,隨機抽取了年齡在15~75歲之間的200人進行調(diào)查,并按年齡繪制頻率分布直方圖如圖所示,把年齡落在區(qū)間和內(nèi)的人分別稱為“青少年人”和“中老年人”. 經(jīng)統(tǒng)計“青少年人”和“中老年人”的人數(shù)比為19:21. 其中“青少年人”中有40人對防控的相關(guān)知識了解全面,“中老年人”中對防控的相關(guān)知識了解全面和不夠全面的人數(shù)之比是2:1.
(1)求圖中的值;
(2)現(xiàn)采取分層抽樣在和中隨機抽取8名市民,從8人中任選2人,求2人中至少有1人是“中老年人”的概率是多少?
(3)根據(jù)已知條件,完成下面的2×2列聯(lián)表,并根據(jù)統(tǒng)計結(jié)果判斷:能夠有99.9%的把握認為“中老年人”比“青少年人”更加了解防控的相關(guān)知識?
了解全面 | 了解不全面 | 合計 | |
青少年人 | |||
中老年人 | |||
合計 |
附表及公式:,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機構(gòu)對全國互聯(lián)網(wǎng)行業(yè)進行調(diào)查統(tǒng)計,得到整個互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖,90后從事互聯(lián)網(wǎng)行業(yè)崗位分布條形圖,則下列結(jié)論中不正確的是( )
注:90后指1990年及以后出生,80后指1980-1989年之間出生,80前指1979年及以前出生.
A.互聯(lián)網(wǎng)行業(yè)從業(yè)人員中90后占一半以上
B.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過總?cè)藬?shù)的
C.互聯(lián)網(wǎng)行業(yè)中從事運營崗位的人數(shù)90后比80前多
D.互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)90后比80后多
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com