【題目】如圖,若Ω是長方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點,F(xiàn)為線段BB1上異于B1的點,且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。
A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺
【答案】D
【解析】解:因為EH∥A1D1 , A1D1∥B1C1 ,
所以EH∥B1C1 , 又EH平面BCC1B1 , 平面EFGH∩平面BCC1B1=FG,
所以EH∥平面BCB1C1 , 又EH平面EFGH,
平面EFGH∩平面BCB1C1=FG,
所以EH∥FG,故EH∥FG∥B1C1 ,
所以選項A、C正確;
因為A1D1⊥平面ABB1A1 ,
EH∥A1D1 , 所以EH⊥平面ABB1A1 ,
又EF平面ABB1A1 , 故EH⊥EF,所以選項B也正確,
故選D.
根據(jù)直線與平面平行的性質(zhì)定理可知EH∥FG,則EH∥FG∥B1C1 , 從而Ω是棱柱,因為A1D1⊥平面ABB1A1 , EH∥A1D1 , 則EF⊥平面ABB1A1 , 又EF平面ABB1A1 , 故EH⊥EF,從而四邊形EFGH是矩形.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知x∈R,符號[x]表示不超過x的最大整數(shù),若函數(shù)f(x)=(x>0),則給出以下四個結(jié)論:
①函數(shù)f(x)的值域為[0,1];
②函數(shù)f(x)的圖象是一條曲線;
③函數(shù)f(x)是(0,+∞)上的減函數(shù);
④函數(shù)g(x)=f(x)﹣a有且僅有3個零點時 .
其中正確的序號為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用min{a,b,c}表示a,b,c三個數(shù)中的最小值,設(shè)f(x)=min{2x , x+2,10﹣x}(x≥0),則f(x)的最大值為( 。
A.4
B.5
C.6
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=loga(1﹣),其中0<a<1.
(Ⅰ)證明:f(x)是(a,+∞)上的減函數(shù);
(Ⅱ)若f(x)>1,求x的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結(jié)論不正確的是( 。
A.CD∥平面PAF
B.DF⊥平面PAF
C.CF∥平面PAB
D.CF⊥平面PAD
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若直線a上的所有點到兩條直線m、n的距離都相等,則稱直線a為“m、n的等距線”.在正方體ABCD﹣A1B1C1D1中,E、F、G、H分別是所在棱中點,M、N分別為EH、FG中點,則在直線MN,EG,F(xiàn)H,B1D中,是“A1D1、AB的等距線”的條數(shù)為( 。
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若在上的最大值為,求實數(shù)的值;
(2)若對任意,都有恒成立,求實數(shù)的取值范圍;
(3)在(1)的條件下,設(shè),對任意給定的正實數(shù),曲線 上是否存在兩點、,使得是以(為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)是數(shù)列的前項和, .
(1)求證:數(shù)列是等差數(shù)列,并求的通項;
(2)設(shè),求數(shù)列的前項和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣2)的定義域為集合A,函數(shù)的值域為集合B.
(1)求A∪B;
(2)若集合C={x|a≤x≤3a﹣1},且B∩C=C,求實數(shù)a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com