(本題滿分12分)
如圖,在直三棱柱ABC-A1B1C1中,E是BC的中點(diǎn)。
(1)求異面直線AE與A1C所成的角;
(2)若G為C1C上一點(diǎn),且EG⊥A1C,試確定點(diǎn)G的位置;
|
解:(1)取B1C1的中點(diǎn)E1,連A1E1,E1C,則AE∥A1E1,∴∠E1A1C是異面直線A
與A1C所成的角。設(shè),則
中, 。
|
(2).由(1)知,A1E1⊥B1C1,
又因?yàn)槿庵鵄BC-A1B1C1是直三棱柱
⊥BCC1B1,又EG⊥A1C CE1⊥EG.
∠=∠GEC ~
即得
所以G是CC1的中點(diǎn) ---------------------------- --8分
(3)連結(jié)AG,設(shè)P是AC的中點(diǎn),過(guò)點(diǎn)P作PQ⊥AG于Q,連EP,EQ,則EP⊥AC.
又平面ABC⊥平面ACC1A1 EP⊥平面ACC1A1
而PQ⊥AG EQ⊥AG.∠PQE是二面角C-AG-E的平面角.
由EP=a,AP=a,PQ=,得
所以二面角C-AG-E的平面角是 ,而所求二面角是二面角C-AG-E的補(bǔ)角,故二面角的平面角是 ------------------12分
略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱(chēng)圖形,并求其對(duì)稱(chēng)中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大。
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com