【題目】如圖,在直三棱柱中,分別是棱上的點(點不同于點),且,為棱上的點,且.
求證:(1)平面平面;
(2)平面.
【答案】(1)見解析;(2)見解析
【解析】
(1)推導(dǎo)出BB1⊥AD,AD⊥DE,從而AD⊥平面BCC1B1,由此能證明平面ADE⊥平面BCC1B1.(2)推導(dǎo)出BB1⊥平面A1B1C1,BB1⊥A1F,A1F⊥B1C1,從而A1F⊥平面BCC1B1,再由AD⊥平面BCC1B1,得A1F∥AD,由此能證明A1F∥平面ADE.
(1)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面ABC,因為AD平面ABC,所以BB1⊥AD,
又因為AD⊥DE,在平面BCC1B1中,BB1與DE相交,
所以AD⊥平面BCC1B1,
又因為AD平面ADE,所以平面ADE⊥平面BCC1B1.
(2)在直三棱柱ABC﹣A1B1C1中,BB1⊥平面A1B1C1,
因為A1F平面A1B1C1,所以BB1⊥A1F,
又因為A1F⊥B1C1,
在平面BCC1B1中,BB1∩B1C1=B1,
所以A1F⊥平面BCC1B1,
在(1)中已證得AD⊥平面BCC1B1,
所以A1F∥AD,又因為A1F平面ADE,AD平面ADE,
所以A1F∥平面ADE.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】由無理數(shù)論引發(fā)的數(shù)字危機一直延續(xù)到19世紀(jì),直到1872年,德國數(shù)學(xué)家戴德金從連續(xù)性的要求出發(fā),用有理數(shù)的“分割”來定義無理數(shù)(史稱戴德金分割),并把實數(shù)理論建立在嚴(yán)格的科學(xué)基礎(chǔ)上,才結(jié)束了無理數(shù)被認為“無理”的時代,也結(jié)束了持續(xù)2000多年的數(shù)學(xué)史上的第一次大危機,所謂戴德金分割,是指將有理數(shù)集劃分為兩個非空的子集與,且滿足,,中的每一個元素都小于中的每一個元素,則稱為戴德金分割.試判斷,對于任一戴德金分割,下列選項中,可能成立的是____.
①沒有最大元素,有一個最小元素;②沒有最大元素,也沒有最小元素;
③有一個最大元素,有一個最小元素;④有一個最大元素,沒有最小元素.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:的四個頂點圍成的四邊形的面積為,原點到直線的距離為.
(1)求橢圓的方程;
(2)已知定點,是否存在過的直線,使與橢圓交于,兩點,且以為直徑的圓過橢圓的左頂點?若存在,求出的方程:若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率,一條準(zhǔn)線方程為
⑴求橢圓的方程;
⑵設(shè)為橢圓上的兩個動點,為坐標(biāo)原點,且.
①當(dāng)直線的傾斜角為時,求的面積;
②是否存在以原點為圓心的定圓,使得該定圓始終與直線相切?若存在,請求出該定圓方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)有如下三個命題:
甲:相交直線l、m都在平面內(nèi),并且都不在平面內(nèi);
乙:直線l、m中至少有一條與平面相交;
丙:平面與平面相交.
當(dāng)甲成立時
A. 乙是丙的充分而不必要條件
B. 乙是丙的必要而不充分條件
C. 乙是丙的充分且必要條件
D. 乙既不是丙的充分條件又不是丙的必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù) ,則函數(shù)g(x)=xf(x)﹣1的零點的個數(shù)為( 。
A. 2B. 3C. 4D. 5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:,該橢圓經(jīng)過點,且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)是圓上任意一點,由引橢圓的兩條切線,,當(dāng)兩條切線的斜率都存在時,證明:兩條切線斜率的積為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班進行了次數(shù)學(xué)測試,其中甲、乙兩人的成績統(tǒng)計情況如莖葉圖所示:
(I)該班數(shù)學(xué)老師決定從甲、乙兩人中選派一人去參加數(shù)學(xué)比賽,你認為誰去更合適?并說明理由;
(II)從甲的成績中人去兩次作進一步的分析,在抽取的兩次成績中,求至少有一次成績在之間的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com