【題目】四棱錐中,平面,四邊形是矩形,且是線段上的動點,是線段的中點.

1)求證:平面;

2)若直線與平面所成角為

①求線段的長;

②求二面角的余弦值.

【答案】1)證明見解析;(2)①2

【解析】

1)以點為原點,軸,軸, ,建立空間直角坐標系,利用數(shù)量積證出,,再利用線面垂直的判定定理即可證出.

2)①求出平面的一個法向量,利用,即可求線段的長;②求出平面的一個法向量,再根據(jù)為平面的一個法向量,利用空間向量的數(shù)量積即可求解.

(1)依題意,以點為原點,軸,軸,

建立空間直角坐標系(如圖),

可得,,

,.

,,,

,.

,,,.

所以平面.

2)①設為平面的法向量,

,即,

不妨令,可得為平面的一個法向量,

于是有,.

所以,得(舍).

,,線段的長為;.

②設為平面的法向量,,

不妨令,可得為平面的一個法向量,.

為平面的一個法向量,.

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】對于,若數(shù)列滿足,則稱這個數(shù)列為“K數(shù)列”.

(Ⅰ)已知數(shù)列:1m+1,m2是“K數(shù)列”,求實數(shù)的取值范圍;

(Ⅱ)是否存在首項為-1的等差數(shù)列為“K數(shù)列”,且其前n項和滿足

?若存在,求出的通項公式;若不存在,請說明理由;

(Ⅲ)已知各項均為正整數(shù)的等比數(shù)列是“K數(shù)列”,數(shù)列不是“K數(shù)列”,若,試判斷數(shù)列是否為“K數(shù)列”,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1)求的單調(diào)區(qū)間;

2)若處取得極值,直線的圖象有三個不同的交點,求的取值范圍.的極大值為1,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三分損益法是古代中國發(fā)明制定音律時所用的方法,其基本原理是:以一根確定長度的琴弦為基準,取此琴強長度的得到第二根琴弦,第二根琴弦長度的為第三根琴弦,第三根琴弦長度的為第四根琴弦.第四根琴弦長度的為第五根琴弦.琴弦越短,發(fā)出的聲音音調(diào)越高,這五根琴弦發(fā)出的聲音按音調(diào)由低到高分別稱為官、商、角(jué)、微(zhǐ)、羽,則角"和對應的琴弦長度之比為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明在某物流派送公司找到了一份派送員的工作,該公司給出了兩種日薪薪酬方案.甲方案:底薪100元,每派送一單獎勵1元;乙方案:底薪140元,每日前54單沒有獎勵,超過54單的部分每單獎勵20元.

(1)請分別求出甲、乙兩種薪酬方案中日薪y(單位:元)與送貨單數(shù)n的函數(shù)關(guān)系式;

(2)根據(jù)該公司所有派送員100天的派送記錄,發(fā)現(xiàn)派送員的日平均派送單數(shù)滿足以下條件:在這100天中的派送量指標滿足如圖所示的直方圖,其中當某天的派送量指標在時,日平均派送量為單.若將頻率視為概率,回答下列問題:

①估計這100天中的派送量指標的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表) ;

根據(jù)以上數(shù)據(jù),設每名派送員的日薪為(單位:元),試分別求出甲、乙兩種方案的日薪的分布列及數(shù)學期望. 請利用數(shù)學期望幫助小明分析他選擇哪種薪酬方案比較合適?并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在正方體中,異面直線分別在上底面和下底面上運動,且,現(xiàn)有以下結(jié)論:

①當所成角為60°時,所成角為60°

②當所成角為60°時,與側(cè)面所成角為30°

所成角的最小值為45°

所成角的最大值為90°

其中正確的是(

A.①③B.②④C.①③④D.②③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從秦朝統(tǒng)一全國幣制到清朝末年,圓形方孔銅錢(簡稱“孔方兄”)是我國使用時間長達兩千多年的貨幣.如圖1,這是一枚清朝同治年間的銅錢,其邊框是由大小不等的兩同心圓圍成的,內(nèi)嵌正方形孔的中心與同心圓圓心重合,正方形外部,圓框內(nèi)部刻有四個字“同治重寶”.某模具廠計劃仿制這樣的銅錢作為紀念品,其小圓內(nèi)部圖紙設計如圖2所示,小圓直徑1厘米,內(nèi)嵌一個大正方形孔,四周是四個全等的小正方形(邊長比孔的邊長。總正方形有兩個頂點在圓周上,另兩個頂點在孔邊上,四個小正方形內(nèi)用于刻銅錢上的字.設,五個正方形的面積和為S

1)求面積S關(guān)于的函數(shù)表達式,并求定義域;

2)求面積S最小值及此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的短軸長為,離心率為。

(1)求橢圓的標準方程;

(2)設橢圓的左,右焦點分別為左,右頂點分別為,,點,,為橢圓上位于軸上方的兩點,且,記直線,的斜率分別為,,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某省高考改革方案指出:該省高考考生總成績將由語文數(shù)學英語3門統(tǒng)一高考成績和學生從思想政治、歷史、地理、物理、化學、生物6門等級性考試科目中自主選擇3個,按獲得該次考試有效成績的考生(缺考考生或未得分的考生除外)總?cè)藬?shù)的相應比例的基礎上劃分等級,位次由高到低分為A、B、C、D、E五等21級,該省的某市為了解本市萬名學生的某次選考化學成績水平,統(tǒng)計在全市范圍內(nèi)選考化學的原始成績,發(fā)現(xiàn)其成績服從正態(tài)分布 ,現(xiàn)從某校隨機抽取了名學生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.

(1)估算該校名學生成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);

(2)現(xiàn)從該校名考生成績在的學生中隨機抽取兩人,該兩人成績排名(從高到低)在全市前名的人數(shù)記為,求隨機變量的分布列和數(shù)學期望.參考數(shù)據(jù):若,則,.

查看答案和解析>>

同步練習冊答案