【題目】等比數(shù)列{an}的各項均為正數(shù),且2a1+3a2=1,a32=9a2a6 ,
(1)求數(shù)列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an , 求數(shù)列{ }的前n項和.

【答案】
(1)解:設數(shù)列{an}的公比為q,由a32=9a2a6得a32=9a42,所以q2=

由條件可知各項均為正數(shù),故q=

由2a1+3a2=1得2a1+3a1q=1,所以a1=

故數(shù)列{an}的通項式為an=


(2)解:bn= + +…+ =﹣(1+2+…+n)=﹣

=﹣ =﹣2(

+ +…+ =﹣2[(1﹣ )+( )+…+( )]=﹣ ,

所以數(shù)列{ }的前n項和為﹣


【解析】(1)設出等比數(shù)列的公比q,由a32=9a2a6 , 利用等比數(shù)列的通項公式化簡后得到關于q的方程,由已知等比數(shù)列的各項都為正數(shù),得到滿足題意q的值,然后再根據(jù)等比數(shù)列的通項公式化簡2a1+3a2=1,把求出的q的值代入即可求出等比數(shù)列的首項,根據(jù)首項和求出的公比q寫出數(shù)列的通項公式即可;(2)把(1)求出數(shù)列{an}的通項公式代入設bn=log3a1+log3a2+…+log3an , 利用對數(shù)的運算性質(zhì)及等差數(shù)列的前n項和的公式化簡后,即可得到bn的通項公式,求出倒數(shù)即為 的通項公式,然后根據(jù)數(shù)列的通項公式列舉出數(shù)列的各項,抵消后即可得到數(shù)列{ }的前n項和.
【考點精析】本題主要考查了等比數(shù)列的通項公式(及其變式)和數(shù)列的前n項和的相關知識點,需要掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)在很多人喜歡自助游,2017年孝感楊店桃花節(jié),美麗的桃花風景和人文景觀迎來眾多賓客.某調(diào)查機構為了了解自助游是否與性別有關,在孝感桃花節(jié)期間,隨機抽取了人,得如下所示的列聯(lián)表:

贊成自助游

不贊成自助游

合計

男性

女性

合計

1若在這人中,按性別分層抽取一個容量為的樣本,女性應抽人,請將上面的列聯(lián)表補充完整,并據(jù)此資料能否在犯錯誤的概率不超過前提下,認為贊成自助游是與性別有關系?

2若以抽取樣本的頻率為概率,從旅游節(jié)大量游客中隨機抽取人贈送精美紀念品,記這人中贊成自助游人數(shù)為,的分布列和數(shù)學期望.

:

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果一個實數(shù)數(shù)列{an}滿足條件: (d為常數(shù),n∈N*),則稱這一數(shù)列“偽等差數(shù)列”,d稱為“偽公差”.給出下列關于某個偽等差數(shù)列{an}的結論:①對于任意的首項a1 , 若d<0,則這一數(shù)列必為有窮數(shù)列;②當d>0,a1>0時,這一數(shù)列必為單調(diào)遞增數(shù)列;③這一數(shù)列可以是一個周期數(shù)列;④若這一數(shù)列的首項為1,偽公差為3,- 可以是這一數(shù)列中的一項;n∈N*⑤若這一數(shù)列的首項為0,第三項為﹣1,則這一數(shù)列的偽公差可以是 .其中正確的結論是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓短軸端點和兩個焦點的連線構成正方形,且該正方形的內(nèi)切圓方程為.

(1)求橢圓的方程;

(2)若拋物線的焦點與橢圓的一個焦點重合,直線與拋物線交于兩點,且,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a1=1,an+1= Sn(n=1,2,3,…).則數(shù)列{an}的通項公式為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知直線的參數(shù)方程為為參數(shù), ),以坐標原點為極點, 軸正半軸為極軸建立極坐標系,圓的極坐標方程為.

(Ⅰ)討論直線與圓的公共點個數(shù);

(Ⅱ)過極點作直線的垂線,垂足為,求點的軌跡與圓相交所得弦長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在上的奇函數(shù)滿足, 為數(shù)列的前項和,且,則__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), .

(1)討論函數(shù)的單調(diào)區(qū)間;

(2)若 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(﹣∞,0)∪(0,+∞)上的奇函數(shù)f(x)滿足f(2)=0,且在(﹣∞,0)上是增函數(shù);又定義行列式 ; 函數(shù) (其中 ).
(1)若函數(shù)g(θ)的最大值為4,求m的值.
(2)若記集合M={m|恒有g(θ)>0},N={m|恒有f[g(θ)]<0},求M∩N.

查看答案和解析>>

同步練習冊答案