已知函數(shù),(1)若的最小值為2,求值;(2)設函數(shù)有零點,求的最小值.

(1)1;(2).

解析試題分析:(1)本小題可利用對勾函數(shù)(a>0,b>0)的性質:當時,在x=時,取最小值完成求值;(2)本小題等價于方程 有實根時求的最小值問題,令,問題可化為方程)有實根問題.
試題解析:(1)因為函數(shù)為對勾函數(shù),而為偶函數(shù),所以只需把問題轉化為考慮時,有最小值為2,求值問題,令,可得,代入中,有,得.
(2)等價于方程 有實根,x=0顯然不是根.令, x為實數(shù),則,同時有:,方程兩邊同時除以,得:,即,此方程有根,令 ,有根則= -4(b-2) 0,若根都在(-2,2),則有=2-2a+b>0, =2+2a+b>0, 即, 也可表為,故的根的范圍是:, 即,故,當b=時,a=時, 取得最小值.
(另解:由于,則,從而,,從而,從而.當且僅當取等號.故的最小值為.
考點:對勾函數(shù)性質,函數(shù)的零點,一元二次方程根的分布問題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)f(x)滿足:①當x=1時有極值;②圖象與y軸交點的縱坐標為﹣3,且在該點處的切線與直線x=2y﹣4垂直.
(1)求f(1)的值;
(2)若函數(shù)g(x)=f(lnx),x∈(1,+∞)上任意一點處的切線斜率恒大于a2﹣a﹣2,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

經(jīng)英國相關機構判斷,MH370在南印度洋海域消失.中國兩艦艇隨即在邊長為100海里的某正方形ABCD(如圖)海域內展開搜索.兩艘搜救船在A處同時出發(fā),沿直線AP、AQ向前聯(lián)合搜索,且(其中點P、Q分別在邊BC、CD上),搜索區(qū)域為平面四邊形APCQ圍成的海平面.設,搜索區(qū)域的面積為.
(1)試建立的關系式,并指出的取值范圍;
(2)求的最大值,并求此時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某房地產開發(fā)公司計劃在一樓區(qū)內建造一個長方形公園ABCD,公園由長方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設休閑區(qū)的長和寬的比,求公園ABCD所占面積S關于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長和寬應如何設計?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,n臺機器人M1,M2,……,Mn位于一條直線上,檢測臺M在線段M1 Mn上,n臺機器人需把各自生產的零件送交M處進行檢測,送檢程序設定:當Mi把零件送達M處時,Mi+1即刻自動出發(fā)送檢(i=1,2,……,n-1)已知Mi的送檢速度為V(V>0), 且,n臺機器人送檢時間總和為f(x).

 
(1)求f(x)的表達式;
(2)當n=3時,求x的值使得f(x)取得最小值;
(3)求f(x)取得最小值時,x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知二次函數(shù)
(1)當時,的最大值為,求的最小值;
(2)對于任意的,總有,試求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

對于函數(shù)f(x)若存在x0∈R,f(x0)=x0成立,則稱x0為f(x)的不動點.已知f(x)=ax2+(b+1)x+b-1(a≠0).
(1)當a=1,b=-2時,求函數(shù)f(x)的不動點;
(2)若對任意實數(shù)b,函數(shù)f(x)恒有兩個相異的不動點,求a的取值范圍;
(3)在(2)的條件下,若y=f(x)圖象上A,B兩點的橫坐標是函數(shù)f(x)的不動點,且A,B兩點關于直線y=kx+對稱,求b的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知,則________________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

函數(shù) 則的解集為________.

查看答案和解析>>

同步練習冊答案