求下列函數(shù)的導數(shù)(本小題滿分12分)
(1) (2)
(3) (4)
科目:高中數(shù)學 來源: 題型:解答題
若存在實常數(shù)和,使得函數(shù)和對其定義域上的任意實數(shù)分別滿足:和,則稱直線為和的“隔離直線”.已知,為自然對數(shù)的底數(shù)).
(1)求的極值;
(2)函數(shù)和是否存在隔離直線?若存在,求出此隔離直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù).
(Ⅰ)當時,求的單調區(qū)間;
(Ⅱ)設函數(shù)在點處的切線為,直線與軸相交于點.若點的縱坐標恒小于1,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),
(1)求函數(shù)的單調遞增區(qū)間;
(2)若不等式在區(qū)間(0,+上恒成立,求的取值范圍;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分14分)設函數(shù),且為的極值點.
(Ⅰ) 若為的極大值點,求的單調區(qū)間(用表示);
(Ⅱ) 若恰有兩解,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知在區(qū)間上是增函數(shù),在區(qū)間和上是減函數(shù),且
(1)求函數(shù)的解析式.
(2)若在區(qū)間上恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù),設曲線在與軸交點處的切線為,為的導函數(shù),滿足.
(1)求的單調區(qū)間.
(2)設,,求函數(shù)在上的最大值;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知函數(shù).()
(1)若函數(shù)有三個零點,且,,求函數(shù) 的單調區(qū)間;
(2)若,,試問:導函數(shù)在區(qū)間(0,2)內是否有零點,并說明理由.
(3)在(Ⅱ)的條件下,若導函數(shù)的兩個零點之間的距離不小于,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com