【題目】已知函數(shù).
(1)當時,求曲線在點處的切線方程;
(2)若函數(shù)有兩個極值點,且.
①求的取值范圍;
②求證:.
【答案】(1) (2) ①,②見解析
【解析】分析:(1)求出,它是切線的斜率,利用點斜式寫出切線方程.
(2)根據(jù)得有兩個極值點等價于在有兩個不同的根,利用判斷式大于零得到的取值范圍.要證明,需證明,但,故只要證明 在上恒成立,可令 ,通過導數(shù)討論其單調性即可.
詳解:(1)當時,,則,
∴,
∴在點處的切線方程為,即;
(2)①函數(shù)的定義域為,且,
因為函數(shù)有兩個極值點,所以有兩個不同的正實根,
∴有兩個不同的正實根,
∴,
即的取值范圍是.
②由題意,的兩根為,由韋達定理,,
其中,
于是 ,
令,則在上恒成立,
即函數(shù)在上為減函數(shù),
又因為,所以,即.
科目:高中數(shù)學 來源: 題型:
【題目】我市某機構調查小學生課業(yè)負擔的情況,設平均每人每天做作業(yè)時間為X(單位:分鐘),按時間分下列四種情況統(tǒng)計:①0~30分鐘;②30~60分鐘;③60~90分鐘;④90分鐘以上,有1000名小學生參加了此項調查,如圖是此次調查中某一項的程序框圖,其輸出的結果是600,則平均每天做作業(yè)時間在0~60分鐘內的學生的頻率是( )
A. 0.20B. 0.80C. 0.60D. 0.40
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,點也為拋物線的焦點.(1)若為橢圓上兩點,且線段的中點為,求直線的斜率;
(2)若過橢圓的右焦點作兩條互相垂直的直線分別交橢圓于和,設線段的長分別為,證明是定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】己知⊙O:x2+y2=6,P為⊙O上動點,過P作PM⊥x軸于M,N為PM上一點,且 . (Ⅰ)求點N的軌跡C的方程;
(Ⅱ)若A(2,1),B(3,0),過B的直線與曲線C相交于D、E兩點,則kAD+kAE是否為定值?若是,求出該值;若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我校高二年級共2000名學生,其中男生1200人.為調查學生們的手機使用情況,采用分層抽樣的方法,隨機抽取100位學生每周平均使用手機上網(wǎng)時間的樣本數(shù)據(jù)(單位:小時).根據(jù)這100個數(shù)據(jù),得到學生每周平均使用手機上網(wǎng)時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間分別為.
(1)應收集男生、女生樣本數(shù)據(jù)各多少人?
(2)估計我校高二年級學生每周平均使用手機上網(wǎng)時間超過4小時的概率.
(3)將平均每周使用手機上網(wǎng)時間在內定義為“長時間使用手機”,在內定義為“短時間使用手機”.在樣本數(shù)據(jù)中,有25名學生不近視.請完成下列2×2列聯(lián)表,并判斷是否有99.5%的把握認為“學生每周使用手機上網(wǎng)時間與近視程度有關”.
近視 | 不近視 | 合計 | |
長時間使用手機上網(wǎng) | |||
短時間使用手機上網(wǎng) | 15 | ||
合計 | 25 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我市為增強市民的環(huán)境保護意識,面向全市征召義務宣傳志愿者.現(xiàn)從符合條件的志愿者中隨機抽取100名按年齡(單位:歲)分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)若從第3,4,5組中用分層抽樣的方法抽取6名志愿者參加廣場的宣傳活動,應從第3,4,5組各抽取多少名志愿者?
(2)請根據(jù)頻率分布直方圖,估計這100名志愿者樣本的平均數(shù);
(3)在(1)的條件下,該市決定在這6名志愿者中隨機抽取2名志愿者介紹宣傳經(jīng)驗,求第4組至少有一名志愿者被抽中的概率.(參考數(shù)據(jù): )
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】三棱錐被平行于底面ABC的平面所截得的幾何體如圖所示,截面為A1B1C1 , ∠BAC=90°,A1A⊥平面ABC,A1A= ,AB= ,AC=2,A1C1=1, = . (Ⅰ)證明:BC⊥平面A1AD
(Ⅱ)求二面角A﹣CC1﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知公差不為零的等差數(shù)列{an}中, S2=16,且成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{|an|}的前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有一直角墻角,兩邊的長度足夠長,若P處有一棵樹與兩墻的距離分別是4m和am(0<a<12),不考慮樹的粗細.現(xiàn)用16m長的籬笆,借助墻角圍成一個矩形花圃ABCD.設此矩形花圃的最大面積為u,若將這棵樹圍在矩形花圃內,則函數(shù)u=f(a)(單位m2)的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com