【題目】已知橢圓經(jīng)過點(diǎn),離心率為, 為坐標(biāo)原點(diǎn).

I)求橢圓的方程.

II)若點(diǎn)為橢圓上一動(dòng)點(diǎn),點(diǎn)與點(diǎn)的垂直平分線l交軸于點(diǎn)的最小值.

【答案】(Ⅰ);(Ⅱ) .

【解析】試題分析I)由離心率得到,再由橢圓過點(diǎn)E可求得 ,故可得橢圓的方程;II)設(shè)點(diǎn),結(jié)合條件可得AP的垂直平分線的方程為: ,令,得,再由點(diǎn)P在橢圓上可得得,化簡(jiǎn)點(diǎn),求出|OB|后用基本不等式求解即可。

試題解析:(Ⅰ)因?yàn)闄E圓的離心率為,

所以,故,

所以橢圓的方程為為,

又點(diǎn)在橢圓上,

所以,

解得

所以橢圓的方程為

(Ⅱ)由題意直線的斜率存在,設(shè)點(diǎn)

則線段的中點(diǎn)的坐標(biāo)為,且直線的斜率

因?yàn)橹本,

故直線的斜率為,且過點(diǎn),

所以直線的方程為: ,

,得,

,

,得,

化簡(jiǎn)得

所以

當(dāng)且僅當(dāng),即時(shí)等號(hào)成立.

所以的最小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為平行四邊形,PA⊥底面ABCD,M是棱PD的中點(diǎn),且PA=AB=AC=2,BC=2

(1)求證:CD⊥平面PAC;
(2)如果如果N是棱AB上一點(diǎn),且直線CN與平面MAB所成角的正弦值為 ,求 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=4cosxsin(x+ )﹣1, (Ⅰ)求f(x)的單調(diào)遞增區(qū)間
(Ⅱ)若sin2x+af(x+ )+1>6cos4x對(duì)任意x∈(﹣ , )恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)在R上可導(dǎo),其導(dǎo)函數(shù)為f′(x),且函數(shù)y=(1﹣x)f′(x)的圖象如圖所示,則下列結(jié)論中一定成立的是(

A.函數(shù)f(x)有極大值f(2)和極小值f(1)
B.函數(shù)f(x)有極大值f(﹣2)和極小值f(1)
C.函數(shù)f(x)有極大值f(2)和極小值f(﹣2)
D.函數(shù)f(x)有極大值f(﹣2)和極小值f(2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】同時(shí)滿足兩個(gè)條件:(1)定義域內(nèi)是減函數(shù);(2)定義域內(nèi)是奇函數(shù)的函數(shù)是(
A.f(x)=﹣x|x|
B.
C.f(x)=tanx
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知P是邊長(zhǎng)為2的正三角形ABC邊BC上的動(dòng)點(diǎn),則 的值(
A.是定值6
B.最大值為8
C.最小值為2
D.與P點(diǎn)位置有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=f(x)的定義域?yàn)椋ī乤,0)∪(0,a)(0<a<1),其圖象上任意一點(diǎn)P(x,y)滿足x2+y2=1,則給出以下四個(gè)命題:①函數(shù)y=f(x)一定是偶函數(shù);②函數(shù)y=f(x)可能是奇函數(shù);③函數(shù)y=f(x)在(0,a)上單調(diào)遞增④若函數(shù)y=f(x)是偶函數(shù),則其值域?yàn)椋╝2 , 1)其中正確的命題個(gè)數(shù)為(
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線E上任意一點(diǎn)P到兩個(gè)定點(diǎn) 的距離之和為4,
(1)求動(dòng)點(diǎn)P的方程;
(2)設(shè)過(0,﹣2)的直線l與曲線E交于C、D兩點(diǎn),且 (O為坐標(biāo)原點(diǎn)),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合A={x|0≤x≤6},B={y|0≤y≤2},從A到B的對(duì)應(yīng)法則f不是映射的是(
A.f:x
B.f:x
C.f:x
D.f:x

查看答案和解析>>

同步練習(xí)冊(cè)答案