的展開(kāi)式中,項(xiàng)的系數(shù)是     (用數(shù)字作答).

 

【答案】

10

【解析】

試題分析:由二項(xiàng)式定理知,的展開(kāi)式中,項(xiàng)的系數(shù)是= =10.

考點(diǎn):本題主要考查二項(xiàng)式展開(kāi)式的通項(xiàng)公式,組合數(shù)的性質(zhì)。

點(diǎn)評(píng):簡(jiǎn)單題,這類問(wèn)題解法有二,一是先求和化簡(jiǎn),再求系數(shù);二是,直接確定各二項(xiàng)式中項(xiàng)的系數(shù),求和化簡(jiǎn)。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若在二項(xiàng)式(x+1)n(n>3且n∈N*)的展開(kāi)式中任取一項(xiàng),該項(xiàng)的系數(shù)為奇數(shù)的概率是1,則在二項(xiàng)式(x+1)n-1的展開(kāi)式中任取一項(xiàng),該項(xiàng)的系項(xiàng)p,q數(shù)為奇數(shù)的概率是p,為偶數(shù)的概率是q,那么p-q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(x2+x+1)n=
D
0
n
x2n+
D
1
n
x2n-1+
D
2
n
x2n-2+…+
D
2n-1
n
x+
D
2n
n
的展開(kāi)式中,把
D
0
n
,
D
1
n
,
D
2
n
,…,
D
2n
n
叫做三項(xiàng)式的n次系數(shù)列.
(1)寫(xiě)出三項(xiàng)式的2次系數(shù)列和3次系數(shù)列;
(2)列出楊輝三角形類似的表(0≤n≤4,n∈N),用三項(xiàng)式的n次系數(shù)表示
D
0
n+1
,
D
1
n+1
,
D
k+1
n+1
(1≤k≤2n-1);
(3)用二項(xiàng)式系數(shù)表示
D
3
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:013

的展開(kāi)式中, 第5項(xiàng)系數(shù)與第7項(xiàng)系相等, 則n等于

[  ]

A. 8  B. 9  C. 10  D. 11

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(x2+x+1)n=
D0n
x2n+
D1n
x2n-1+
D2n
x2n-2+…+
D2n-1n
x+
D2nn
的展開(kāi)式中,把
D0n
,
D1n
,
D2n
,…,
D2nn
叫做三項(xiàng)式的n次系數(shù)列.
(1)寫(xiě)出三項(xiàng)式的2次系數(shù)列和3次系數(shù)列;
(2)列出楊輝三角形類似的表(0≤n≤4,n∈N),用三項(xiàng)式的n次系數(shù)表示
D0n+1
,
D1n+1
,
Dk+1n+1
(1≤k≤2n-1);
(3)用二項(xiàng)式系數(shù)表示
D3n

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010年高考數(shù)學(xué)小題沖刺訓(xùn)練(14)(解析版) 題型:解答題

若在二項(xiàng)式(x+1)n(n>3且n∈N*)的展開(kāi)式中任取一項(xiàng),該項(xiàng)的系數(shù)為奇數(shù)的概率是1,則在二項(xiàng)式(x+1)n-1的展開(kāi)式中任取一項(xiàng),該項(xiàng)的系項(xiàng)p,q數(shù)為奇數(shù)的概率是p,為偶數(shù)的概率是q,那么p-q=   

查看答案和解析>>

同步練習(xí)冊(cè)答案