【題目】將三項式(x2+x+1)n展開,當n=0,1,2,3,…時,得到以下等式: (x2+x+1)0=1
(x2+x+1)1=x2+x+1
(x2+x+1)2=x4+2x3+3x2+2x+1
(x2+x+1)3=x6+3x5+6x4+7x3+6x2+3x+1
…
觀察多項式系數之間的關系,可以仿照楊輝三角構造如圖所示的廣義楊輝三角形,其構造方法為:第0行為1,以下各行每個數是它頭上與左右兩肩上3數(不足3數的,缺少的數計為0)之和,第k行共有2k+1個數.若在(1+ax)(x2+x+1)5的展開式中,x8項的系數為67,則實數a值為 .
科目:高中數學 來源: 題型:
【題目】函數.
(1)當時,求函數的定義域;
(2)若判斷的奇偶性;
(3)是否存在實數使函數在[2,3]遞增,并且最大值為1,若存在,求出的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x+lg +x)的定義域是R.
(1)判斷f(x)在R上的單調性,并證明;
(2)若不等式f(m3x)+f(3x﹣9x﹣4)<0對任意x∈R恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分14分)已知函數.
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)若存在兩條直線,都是曲線的切線,求實數的取值范圍;
(Ⅲ)若,求實數的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在三棱錐S﹣ABC中,SO⊥平面ABC,側面SAB與SAC均為等邊三角形,∠BAC=90°,O為BC的中點,求二面角A﹣SC﹣B的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:方程 表示焦點在y軸上的橢圓,命題q:關于x的方程x2+2mx+2m+3=0無實根,若“p∧q”為假命題,“p∨q”為真命題,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com