已知函數(shù)f(x)=logax和g(x)=2loga(2x+4),(a>0,a≠1).
(I)若函數(shù)y=f(x)與函數(shù)y=g(x)的圖象在x=x0處的切線平行,求x0的值;
(II)設(shè)F(x)=g(x)-f(x),當(dāng)x∈[1,4]時,F(xiàn)(x)≥2恒成立,求實(shí)數(shù)a的取值范圍.
分析:(I)由函數(shù)y=f(x)與函數(shù)y=g(x)的圖象在x=x0處的切線平行,可用在該點(diǎn)處的導(dǎo)數(shù)相等解決;
(II)先抽象出F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga
(2x+4)2
x
,x∈[1,4]
,由當(dāng)x∈[1,4]時,F(xiàn)(x)≥2恒成立,再求得函數(shù)F(x)的最小值即可.
解答:解:(I)∵f′(x)=
1
x
logae,g′(x)=
4
2x+4
logae
(3分)∵函數(shù)f(x)和g(x)的圖象在x=x0處的切線互相平行∴f'(x0)=g'(x0)(5分)∴
1
x0
logae=
4
2x0+4
logae
∴x0=2(6分)
(II)∴F(x)=g(x)-f(x)=2loga(2x+4)-logax=loga
(2x+4)2
x
,x∈[1,4]

h(x)=
(2x+4)2
x
=4x+
16
x
+16,x∈[1,4]
h′(x)=4-
16
x2
=
4(x-2)(x+2)
x2
,x∈[1,4]
∴當(dāng)1≤x<2時,h′(x)<0,
當(dāng)2<x≤4時,h′(x)>0.h(x)在[1,2)是單調(diào)減函數(shù),在(2,4]是單調(diào)增函數(shù).(9分)
∴h(x)min=h(2)=32,∴h(x)max=h(1)=h(4)=36
∴當(dāng)0<a<1時,有F(x)min=loga36,當(dāng)a>1時,有F(x)min=loga32.
∵當(dāng)x∈[1,4]時,F(xiàn)(x)≥2恒成立,∴F(x)min≥2(10分)
∴滿足條件的a的值滿足下列不等式組
0<a<1
loga36≥2
;①,或
a>1
loga32≥2.

不等式組①的解集為空集,解不等式組②得1<a≤4
2

綜上所述,滿足條件的a的取值范圍是:1<a≤4
2
.
(12分)
點(diǎn)評:本題主要考查導(dǎo)數(shù)的幾何意義和用導(dǎo)數(shù)法解決恒成立問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2x-2+ae-x(a∈R)
(1)若曲線y=f(x)在點(diǎn)(1,f(1))處的切線平行于x軸,求a的值;
(2)當(dāng)a=1時,若直線l:y=kx-2與曲線y=f(x)在(-∞,0)上有公共點(diǎn),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+2|lnx-1|.
(1)求函數(shù)y=f(x)的最小值;
(2)證明:對任意x∈[1,+∞),lnx≥
2(x-1)
x+1
恒成立;
(3)對于函數(shù)f(x)圖象上的不同兩點(diǎn)A(x1,y1),B(x2,y2)(x1<x2),如果在函數(shù)f(x)圖象上存在點(diǎn)M(x0,y0)(其中x0∈(x1,x2))使得點(diǎn)M處的切線l∥AB,則稱直線AB存在“伴侶切線”.特別地,當(dāng)x0=
x1+x2
2
時,又稱直線AB存在“中值伴侶切線”.試問:當(dāng)x≥e時,對于函數(shù)f(x)圖象上不同兩點(diǎn)A、B,直線AB是否存在“中值伴侶切線”?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線x+3y-1=0垂直,若數(shù)列{
1
f(n)
}的前n項(xiàng)和為Sn,則S2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx
(Ⅰ)求函數(shù)f(x)的極值點(diǎn);
(Ⅱ)若直線l過點(diǎn)(0,-1),并且與曲線y=f(x)相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3
x
a
+
3
(a-1)
x
,a≠0且a≠1.
(1)試就實(shí)數(shù)a的不同取值,寫出該函數(shù)的單調(diào)增區(qū)間;
(2)已知當(dāng)x>0時,函數(shù)在(0,
6
)上單調(diào)遞減,在(
6
,+∞)上單調(diào)遞增,求a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線C,試問是否存在經(jīng)過原點(diǎn)的直線l,使得l為曲線C的對稱軸?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案