【題目】函數(shù)f(x)的定義域?yàn)镈,若滿足①f(x)在D內(nèi)是單調(diào)函數(shù),②存在[a,b]D,使f(x)在[a,b]上的值域?yàn)閇a,b],那么y=f(x)叫做閉函數(shù),現(xiàn)有f(x)= +k是閉函數(shù),那么k的取值范圍是
【答案】(﹣ ,a]
【解析】解:函數(shù)f(x)= +k 的定義域?yàn)閇﹣2,+∞),且在定義域內(nèi)是增函數(shù),故滿足①,
又f(x)在[a,b]上的值域?yàn)閇a,b],∴f(a)=a,f(b)=b,
∴ +k=a,且 +k=b,∴a+2=(a﹣k)2,且 b+2=(b﹣k)2,且k≤a,k≤b.
即 ,故 a和 b 是方程 x2﹣(2k+1)x+k2﹣2=0在[﹣2,+∞)上的兩個(gè)根.
令 g(x)=x2﹣(2k+1)x+k2﹣2,
則有 ,解得 a≥k>﹣ ,那么k的取值范圍是(﹣ ,a],
所以答案是:(﹣ ,a].
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)的值域的相關(guān)知識(shí),掌握求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,以及對(duì)函數(shù)單調(diào)性的判斷方法的理解,了解單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=lnx,則函數(shù)g(x)=f(x)﹣f′(x)的零點(diǎn)所在的區(qū)間是( )
A.(0,1)
B.(1,2)
C.(2,3)
D.(3,4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線C:x2=2py(p>0),過其焦點(diǎn)作斜率為1的直線l交拋物線C于M、N兩點(diǎn),且|MN|=16. (Ⅰ)求拋物線C的方程;
(Ⅱ)已知?jiǎng)訄AP的圓心在拋物線C上,且過定點(diǎn)D(0,4),若動(dòng)圓P與x軸交于A、B兩點(diǎn),且|DA|<|DB|,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,1]上的最大值與最小值的差是1,則實(shí)數(shù)a的值為
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合A={x|x2﹣1=0},B={x|x2﹣2ax+b=0},若A∪B=A,求實(shí)數(shù)a,b滿足的條件.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=( + )x3(a>0且a≠1).
(1)求函數(shù)f(x)的定義域;
(2)討論函數(shù)f(x)的奇偶性;
(3)求a的取值范圍,使f(x)>0在定義域上恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+2mx+2m+1=0(m∈R).
(1)若方程有兩實(shí)根,其中一根在區(qū)間(﹣1,1)內(nèi),另一根在區(qū)間(1,2)內(nèi),求m的取值范圍;
(2)若方程兩實(shí)根均在區(qū)間(﹣1,2)內(nèi),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= ﹣5x+4lnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求函數(shù)f(x)的極值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com