給定兩個(gè)長度為1的平面向量和,它們的夾角為90°.如圖所示,點(diǎn)C在以O為圓心的圓弧上運(yùn)動(dòng),若=x+y,其中x,y∈R,則xy的范圍是 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十八第四章第四節(jié)練習(xí)卷(解析版) 題型:選擇題
已知偶函數(shù)f(x)滿足:f(x)=f(x+2),且當(dāng)x∈[0,1]時(shí),f(x)=sinx,其圖象與直線y=在y軸右側(cè)的交點(diǎn)按橫坐標(biāo)從小到大依次記為P1,P2,…,則·等于( )
(A)2(B)4(C)8(D)16
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十九第四章第五節(jié)練習(xí)卷(解析版) 題型:填空題
已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則z1·z2的實(shí)部的最大值為 ,虛部的最大值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十三第三章第七節(jié)練習(xí)卷(解析版) 題型:解答題
在△ABC中,a,b,c分別為角A,B,C的對(duì)邊.已知a=1,b=2,sinC=(其中C為銳角).
(1)求邊c的值.
(2)求sin(C-A)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十三第三章第七節(jié)練習(xí)卷(解析版) 題型:選擇題
在△ABC中,若sin2A+sin2B<sin2C,則△ABC的形狀是( )
(A)鈍角三角形 (B)直角三角形
(C)銳角三角形 (D)不能確定
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十七第四章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
已知a,b,c為△ABC的三個(gè)內(nèi)角A,B,C的對(duì)邊,向量m=(,-1),n=(cosA,sinA).若m⊥n,且acosB+bcosA=csinC,則角A,B的大小分別為( )
(A),(B),
(C),(D),
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)二十七第四章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
已知非零向量a,b滿足向量a+b與向量a-b的夾角為,那么下列結(jié)論中一定成立的是( )
(A)a=b(B)|a|=|b|
(C)a⊥b(D)a∥b
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十第五章第一節(jié)練習(xí)卷(解析版) 題型:解答題
設(shè)數(shù)列{an}前n項(xiàng)和為Sn,數(shù)列{Sn}的前n項(xiàng)和為Tn,滿足Tn=2Sn-n2,n∈N*.
(1)求a1的值.
(2)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)三十六第六章第二節(jié)練習(xí)卷(解析版) 題型:選擇題
已知函數(shù)f(x)=若f(2-x2)>f(x),則實(shí)數(shù)x的取值范圍是( )
(A)(-∞,-1)∪(2,+∞)
(B)(-∞,-2)∪(1,+∞)
(C)(-1,2)
(D)(-2,1)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com