【題目】已知函數(shù)f(x)=lnx﹣a(x﹣1),g(x)=ex .
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的最值;
(2)當(dāng)a≠0時(shí),過原點(diǎn)分別作曲線y=f(x)與y=g(x)的切線l1 , l2 , 已知兩切線的斜率互為倒數(shù),證明: <a< .
【答案】
(1)解:當(dāng)a=2時(shí),f(x)=lnx﹣2(x﹣1)的定義域?yàn)椋?,+∞),
f′(x)= ﹣2= ;
當(dāng)x∈(0, )時(shí),f′(x)>0,當(dāng)x∈( ,+∞)時(shí),f′(x)<0,
即函數(shù)f(x)在(0, )上單調(diào)遞增,在( ,+∞)上單調(diào)遞減.
所以f(x)max=f( )=1﹣ln2,沒有最小值
(2)解:證明:設(shè)切線l2的方程為y=k2x,切點(diǎn)為(x2,y2),則y2= ,
k2=g′(x2)= = ,
所以x2=1,y2=e,則k2=e.
由題意知,切線l1的斜率為k1= = ,l1的方程為y= x;
設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1,y1),則k1=f′(x1)= ﹣a= = ,
所以y1= =1﹣ax1,a= ﹣ .
又因?yàn)閥1=lnx1﹣a(x1﹣1),消去y1和a后,
整理得lnx1﹣1+ ﹣ =0.
令m(x)=lnx﹣1+ ﹣ =0,
則m′(x)= ﹣ = ,m(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增.
若x1∈(0,1),因?yàn)閙( )=﹣2+e﹣ >0,m(1)=﹣ <0,所以x1∈( ,1),
而a= ﹣ 在x1∈( ,1)上單調(diào)遞減,所以 <a< .
若x1∈(1,+∞),因?yàn)閙(x)在(1,+∞)上單調(diào)遞增,且m(e)=0,則x1=e,
所以a= ﹣ =0(舍去).
綜上可知, <a<
【解析】(1)當(dāng)a=2時(shí),f(x)=lnx﹣2(x﹣1)的定義域?yàn)椋?,+∞),再利用導(dǎo)數(shù)求函數(shù)的單調(diào)區(qū)間,從而求解函數(shù)的最值;(2)設(shè)切線l2的方程為y=k2x,從而由導(dǎo)數(shù)及斜率公式可求得切點(diǎn)為(1,e),k2=e;再設(shè)l1的方程為y= x;設(shè)l1與曲線y=f(x)的切點(diǎn)為(x1 , y1),從而可得y1= =1﹣ax1 , a= ﹣ ;結(jié)合y1=lnx1﹣a(x1﹣1)可得lnx1﹣1+ ﹣ =0,再令m(x)=lnx﹣1+ ﹣ ,從而求導(dǎo)確定函數(shù)的單調(diào)性,從而確定 <a< ,問題得證.
【考點(diǎn)精析】本題主要考查了函數(shù)的最大(小)值與導(dǎo)數(shù)的相關(guān)知識(shí)點(diǎn),需要掌握求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內(nèi)的極值;(2)將函數(shù)的各極值與端點(diǎn)處的函數(shù)值,比較,其中最大的是一個(gè)最大值,最小的是最小值才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲,乙兩人進(jìn)行圍棋比賽,共比賽2n(n∈N+)局,根據(jù)以往比賽勝負(fù)的情況知道,每局甲勝的概率和乙勝的概率均為 .如果某人獲勝的局?jǐn)?shù)多于另一人,則此人贏得比賽.記甲贏得比賽的概率為P(n).
(1)求P(2)與P(3)的值;
(2)試比較P(n)與P(n+1)的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,底面是邊長(zhǎng)為3的正方形,平面,,,與平面所成的角為.
(1)求證:平面平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,以原點(diǎn)O為頂點(diǎn),以y軸為對(duì)稱軸的拋物線E的焦點(diǎn)為F(0,1),點(diǎn)M是直線l:y=m(m<0)上任意一點(diǎn),過點(diǎn)M引拋物線E的兩條切線分別交x軸于點(diǎn)S,T,切點(diǎn)分別為B,A.
(1)求拋物線E的方程;
(2)求證:點(diǎn)S,T在以FM為直徑的圓上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在如圖所示的四棱錐P﹣ABCD中,四邊形ABCD為正方形,PA⊥CD,BC⊥平面PAB,且E,M,N分別為PD,CD,AD的中點(diǎn), =3 .
(1)證明:PB∥平面FMN;
(2)若PA=AB,求二面角E﹣AC﹣B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,A,B,C的對(duì)邊分別是a,b,c,3sin2C+8sin2A=11sinAsinC,且c<2a.
(1)求證:△ABC為等腰三角形
(2)若△ABC的面積為8 .且sinB= ,求BC邊上的中線長(zhǎng).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,橢圓 =1(a>b>0)的左、右頂點(diǎn)分別為A,B,焦距為2 ,直線x=﹣a與y=b交于點(diǎn)D,且|BD|=3 ,過點(diǎn)B作直線l交直線x=﹣a于點(diǎn)M,交橢圓于另一點(diǎn)P.
(1)求橢圓的方程;
(2)證明: 為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四種說(shuō)法中,
①命題“存在x∈R,x2﹣x>0”的否定是“對(duì)于任意x∈R,x2﹣x<0”;
②命題“p且q為真”是“p或q為真”的必要不充分條件;
③已知冪函數(shù)f(x)=xα的圖象經(jīng)過點(diǎn)(2, ),則f(4)的值等于 ;
④已知向量 =(3,﹣4), =(2,1),則向量 在向量 方向上的投影是 .
說(shuō)法錯(cuò)誤的個(gè)數(shù)是( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖4所示,其中成績(jī)分組區(qū)間是: ,,,,.
(1)求圖中的值;
(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分;
(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示,求數(shù)學(xué)成績(jī)?cè)?/span>之外的人數(shù).
分?jǐn)?shù)段 |
| |||
X:y | 1:1 | 2:1 | 3:4 | 4:5 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com