11.下列函數(shù)中,在其定義域內(nèi)既是奇函數(shù)又是減函數(shù)的是( 。
A.y=($\frac{1}{2}$)xB.y=$\frac{1}{x-1}$C.y=x+sinxD.y=-x3-x

分析 對(duì)4個(gè)選項(xiàng)分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對(duì)于A,是指數(shù)函數(shù),在其定義域內(nèi)是減函數(shù),但不是奇函數(shù);
對(duì)于B,不是奇函數(shù),在其定義域內(nèi)不是減函數(shù);
對(duì)于C,在其定義域內(nèi)是奇函數(shù),不是減函數(shù)
對(duì)于D,在其定義域內(nèi)既是奇函數(shù),又是減函數(shù);
綜上知,D滿足題意
故選D.

點(diǎn)評(píng) 本題考查函數(shù)奇偶性與單調(diào)性的綜合,考查常見初等函數(shù),需要一一判斷.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知數(shù)列{an}的首項(xiàng)a1=1,前n項(xiàng)和為Sn,且Sn+1-2Sn-n-1=0(n∈N*).
(Ⅰ) 求證:數(shù)列{an+1}為等比數(shù)列;
(Ⅱ) 令bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.$\root{4}{a-2}$+(a-4)0有意義,則a的取值范圍是( 。
A.a≥2B.2≤a<4或a>4C.a≠2D.a≠4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若函數(shù)f(x)=$\left\{\begin{array}{l}{1-{2}^{x},x≤0}\\{{x}^{3}-3x+a,x>0}\end{array}\right.$的值域?yàn)閇0,+∞),則實(shí)數(shù)a的取值范圍是(  )
A.2≤a≤3B.a>2C.a≥2D.2≤a<3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若z=$\frac{1}{1-i}$-i,則|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.-$\frac{1}{2}$+$\frac{1}{2}i$D.$\frac{1}{2}$+$\frac{1}{2}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{f(x-3)(x>0)}\end{array}$,則f(2013)=( 。
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.函數(shù)f(x)=$\frac{1}{3}{x^3}+\frac{1}{2}m{x^2}$+x在R上有極值,則m的取值范圍是{m|m>2或m<-2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別為a,b,c,已知b=4,c=6,C=2B.
(1)求cosB的值;
(2)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$x2-2x.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)f(x)的極值.

查看答案和解析>>

同步練習(xí)冊答案