數(shù)列{an}的前n項(xiàng)和Sn=n2-2n(n∈N*),數(shù)列{bn}滿足bn=(n∈N*).
(1)判斷數(shù)列{an}是否為等差數(shù)列,并證明你的結(jié)論;
(2)求數(shù)列{bn}中值最大的項(xiàng)和值最小的項(xiàng).
解 (1)∵Sn=n2-2n,∴a1=S1=-2=-. 當(dāng)n≥2時(shí),an=Sn-Sn-1=n2-2n-[(n-1)2-2(n-1)]=n-. ∵a1=-也滿足上式,∴an=n-(n∈N*). ∵an+1-an=n+1--(n-)=1(常數(shù)), ∴{an}是以-為首項(xiàng),以1為公差的等差數(shù)列. (2)解法一 ∵an=n-,∴bn=1+=1+. ∵函數(shù)f(x)=1+在區(qū)間(-∞,)及(,+∞)上分別為減函數(shù), ∴1>b1>b2,b3>b4>b5>…>1. ∴{bn}中,值最大的項(xiàng)是b3=3,值最小的項(xiàng)是b2=-1. (2)解法二 ∵bn=1+=1+, bn+1-bn=1+ , ∴b2<b1<1. 當(dāng)n≥3,且n∈N時(shí),bn+1<bn,且bn>1. 又b3=3,∴{bn}中,值最大的項(xiàng)為b3=3,值最小的項(xiàng)為b2=-1. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
Tn |
ak |
SnTn |
Tn(1)+Tn(2)+…+Tn(n) |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
a12 |
2-q-q-1 |
q-qn+1+1-q1-n |
1-q |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
pn-q |
p |
(p-1)(p-q) |
1 |
pn |
1 |
(2n-1)(2n+1-1) |
2 |
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
3 |
2 |
3 |
1 |
4 |
2 |
4 |
3 |
4 |
1 |
5 |
2 |
5 |
3 |
5 |
4 |
5 |
1 |
n |
2 |
n |
n-1 |
n |
3 |
8 |
n2+n |
4 |
5 |
7 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
6 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com