某市的老城區(qū)改造建筑用地平面示意圖如圖所示.經(jīng)規(guī)劃調(diào)研確定,老城區(qū)改造規(guī)劃建筑用地區(qū)域可近似為半徑是R的圓面.該圓的內(nèi)接四邊形ABCD是原老城區(qū)建筑用地,測(cè)量可知邊界AB=AD=4萬(wàn)米,BC=6萬(wàn)米,CD=2萬(wàn)米.
(I)請(qǐng)計(jì)算原老城區(qū)建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理?xiàng)l件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調(diào)整.為了提高老城區(qū)改造建筑用地的利用率,請(qǐng)?jiān)?sub>上設(shè)計(jì)一點(diǎn)P,使得老城區(qū)改造的新建筑用地APCD的面積最大,并求出其最大值.
解: (1)因?yàn)樗倪呅?i>ABCD內(nèi)接于圓,所以∠ABC+∠ADC=180°,連接AC,由余弦定理:
AC2=42+62-2×4×6cos∠ABC
=42+22-2×2×4cos∠ADC.
∴cos∠ABC=.∵∠ABC∈(0,π),∴∠ABC=60°.
則S四邊形ABCD=×4×6×sin60°+×2×4×sin120°=8(萬(wàn)平方米).
在△ABC中,由余弦定理:
AC2=AB2+BC2-2AB·BC·cos∠ABC
=16+36-2×4×6×=28,故AC=2.
由正弦定理得,2R===,∴R=(萬(wàn)米).......6分
(2)S四邊形APCD=S△ADC+S△APC, S△ADC=AD·CD·sin120°=2.
設(shè)AP=x,CP=y,則S△APC=xy·sin60°=xy.
又由余弦定理:AC2=x2+y2-2xycos60°=x2+y2-xy=28.
∴x2+y2-xy≥2xy-xy=xy. ∴xy≤28,當(dāng)且僅當(dāng)x=y時(shí)取等號(hào).
∴S四邊形APCD=2+xy≤2+×28=9,
即當(dāng)x=y時(shí)面積最大,其最大面積為9萬(wàn)平方米.......12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河南省三門峽市高三上學(xué)期調(diào)研考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
某市的老城區(qū)改造建筑用地平面示意圖如圖所示.經(jīng)規(guī)劃調(diào)研確定,老城區(qū)改造規(guī)劃建筑用地區(qū)域可近似為半徑是R的圓面.該圓的內(nèi)接四邊形ABCD是原老城區(qū)建筑用地,測(cè)量可知邊界AB=AD=4萬(wàn)米,BC=6萬(wàn)米,CD=2萬(wàn)米.
(I)請(qǐng)計(jì)算原老城區(qū)建筑用地ABCD的面積及圓面的半徑R的值;
(II)因地理?xiàng)l件的限制,邊界AD、CD不能變更,而邊界AB、BC可以調(diào)整.為了提高老城區(qū)改造建筑用地的利用率,請(qǐng)?jiān)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052512235512504250/SYS201205251225507187633651_ST.files/image001.png">上設(shè)計(jì)一點(diǎn)P,使得老城區(qū)改造的新建筑用地APCD的面積最大,并求出其最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com