已知圓C的半徑為2,圓心在軸正半軸上,直線與圓C相切
(1)求圓C的方程;
(2)過點的直線與圓C交于不同的兩點且為
求:的面積.

(1);(2).

解析試題分析:(1)半徑已知,所以只需確定圓心即可,設圓心,因為直線與圓相切,利用圓心到直線的距離列式求;(2)從可以看出,這是韋達定理的特征,故把直線方程設為,與(1)所求圓的方程聯(lián)立,得關于的一元二次方程,用含有的代數(shù)式表示出,進而利用列方程,求,然后用弦長公式求,用點到直線的距離公式求高,面積可求.
試題解析:(I)設圓心為,則圓C的方程為
因為圓C與相切    所以 解得:(舍)
所以圓C的方程為:                                     4分
(II)依題意:設直線l的方程為:

∵l與圓C相交于不同兩點
     

又∵ ∴
整理得: 解得(舍)
∴直線l的方程為:                                          8分
圓心C到l的距離  在△ABC中,|AB|=
原點O到直線l的距離,即△AOB底邊AB邊上的高
                         12分
考點:1、直線和圓的位置關系;2、圓的方程;3、弦長公式和點到直線的距離公式和韋達定理.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓的離心率為,且經(jīng)過點,圓的直徑為的長軸.如圖,是橢圓短軸端點,動直線過點且與圓交于兩點,垂直于交橢圓于點.

(1)求橢圓的方程;
(2)求 面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓的圓心與點關于直線對稱,直線與圓相交于、兩點,且,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線 與圓交與兩點,點.
(1)當時,求的值;
(2)當時,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓,直線
(1)判斷直線與圓C的位置關系;
(2)設與圓C交與不同兩點A、B,求弦AB的中點M的軌跡方程;
(3)若定點P(1,1)分弦AB為,求此時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓及直線. 當直線被圓截得的弦長為時, 求(1)的值; (2)求過點并與圓相切的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

在平面直角坐標系中,已知圓 的圓心為,過點且斜率為的直線與圓相交于不同的兩點
(Ⅰ)求的取值范圍;
(Ⅱ)以OA,OB為鄰邊作平行四邊形OADB,是否存在常數(shù),使得直線OD與PQ平行?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

若圓經(jīng)過坐標原點和點,且與直線相切, 從圓外一點向該圓引切線,為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知圓截直線的弦長為
(1)求的值;
(2)求過點的圓的切線所在的直線方程.

查看答案和解析>>

同步練習冊答案