【題目】在直角坐標系中,曲線的參數(shù)方程為為參數(shù)),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,點為曲線上的動點,點在線段的延長線上,且滿足,點的軌跡為

(1)求,的極坐標方程;

(2)設點的極坐標為,求△面積的最小值.

【答案】(1)曲線的極坐標方程為,的極坐標方程為;(2).

【解析】

(1)消去參數(shù),得到曲線的普通方程,進而根據極坐標方程與直角坐標方程的互化,即可得到曲線的極坐標方程,設點的極坐標為,點的極坐標為,根據極徑的幾何意義,利用,即可得到的極坐標方程.

(2)由題設知,利用,即可求解.

(1)∵曲線的參數(shù)方程為為參數(shù)),

∴曲線的普通方程為,∴曲線的極坐標方程為

設點的極坐標為,點的極坐標為

,,,

,,,即,

的極坐標方程為

(2)由題設知,

所以,

時,取得最小值為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我們要計算由拋物線,x軸以及直線所圍成的區(qū)域的面積S,可用x軸上的分點、、、1將區(qū)間分成n個小區(qū)間,在每個小區(qū)間上做一個小矩形,使矩形的左端點在拋物線上,這些矩形的高分別為、、、,矩形的底邊長都是,設所有這些矩形面積的總和為,為求S,只須令分割的份數(shù)n無限增大,就無限趨近于S,即.

1)求數(shù)列的通項公式,并求出S;

2)利用相同的思想方法,探求由函數(shù)的圖象,x軸以及直線所圍成的區(qū)域的面積T.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某高校在年的自主招生考試成績中隨機抽取名學生的筆試成績,按成績分組:第,第,第,第,第得到的頻率分布直方圖如圖所示

分別求第組的頻率;

若該校決定在第組中用分層抽樣的方法抽取名學生進入第二輪面試,

已知學生甲和學生乙的成績均在第組,求學生甲和學生乙同時進入第二輪面試的概率;

根據直方圖試估計這名學生成績的平均分.(同一組中的數(shù)據用改組區(qū)間的中間值代表)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩位同學進入新華書店購買數(shù)學課外閱讀書籍,經過篩選后,他們都對三種書籍有購買意向,已知甲同學購買書籍的概率分別為,乙同學購買書籍的概率分別為,假設甲、乙是否購買三種書籍相互獨立.

1)求甲同學購買3種書籍的概率;

2)設甲、乙同學購買2種書籍的人數(shù)為,求的概率分布列和數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,三棱柱中,側棱底面,,,外接球的球心為,點是側棱上的一個動點.有下列判斷:①直線與直線是異面直線;②一定不垂直于; ③三棱錐的體積為定值;④的最小值為.其中正確的序號是______

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的各項均為正數(shù),其前n項和為Sn,且an2+4an8Sn0,則an_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),的導函數(shù)為.

1)試討論函數(shù)的零點個數(shù);

2)若對任意的,關于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 山東省《體育高考方案》于20122月份公布,方案要求以學校為單位進行體育測試,某校對高三1班同學按照高考測試項目按百分制進行了預備測試,并對50分以上的成績進行統(tǒng)計,其頻率分布直方圖如圖所示,若90~100分數(shù)段的人數(shù)為2.

)請估計一下這組數(shù)據的平均數(shù)M;

)現(xiàn)根據初賽成績從第一組和第五組(從低分段到高分段依次為第一組、第二組、、第五組)中任意選出兩人,形成一個小組.若選出的兩人成績差大于20,則稱這兩人為幫扶組,試求選出的兩人為幫扶組的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解人們對“延遲退休年齡政策”的態(tài)度,某部門從年齡在15歲到65歲的人群中隨機調查了100人,并得到如圖所示的頻率分布直方圖,在這100人中不支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結果如表所示:

(1)由頻率分布直方圖,估計這100人年齡的平均數(shù);

(2)根據以上統(tǒng)計數(shù)據填寫下面的22列聯(lián)表,據此表,能否在犯錯誤的概率不超過5%的前提下,認為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度存在差異?

45歲以下

45歲以上

總計

不支持

支持

總計

參考數(shù)據:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

同步練習冊答案