等差數(shù)列{an}的前n項和為Sn,若a10+a12=2,則S21的值是
 
考點:等差數(shù)列的前n項和,其他不等式的解法
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)結(jié)合a10+a12=2求得a11,再由等差數(shù)列的前n項和得答案.
解答: 解:在等差數(shù)列{an}中,由a10+a12=2,得
2a11=2,則a11=1,
∴S21=21a11=21×1=21.
故答案為:21.
點評:本題考查了等差數(shù)列的性質(zhì),考查了等差數(shù)列的前n項和,是基礎(chǔ)的計算題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

關(guān)于函數(shù)y=-
3
x
的單調(diào)性的敘述正確的是( 。
A、在(-∞,0)上是遞增的,在(0,+∞)上是遞減的
B、在(-∞,0)∪(0,+∞)上是遞增的
C、在[0,+∞)上遞增
D、在(-∞,0)和(0,+∞)上都是遞增的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖OPQ是半徑為
2
,圓心角為
π
4
的扇形,ABCD是扇形OPQ的內(nèi)接距形,A,B在OP上,點D在OQ上,點C在弧PQ上,記∠POQ=θ;
(Ⅰ)用含θ的式子表示AB的長;
(Ⅱ)記距形ABCD的面積為f(θ),求f(θ)的單調(diào)區(qū)間和最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ex-1(x>0)
1-|
1
2
x+1|(x≤0)
,若f(x)≥ax恒成立,則a的取值范圍是( 。
A、(∞,
1
2
]
B、[-
1
2
,
1
2
]
C、[
1
2
,1]
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有下列命題:
①在函數(shù)y=cos(x-
π
4
)cos(x+
π
4
)
的圖象中,相鄰兩個對稱中心的距離為π;
②函數(shù)y=
x+3
x-1
的圖象關(guān)于點(-1,1)對稱;
③“a≠5且b≠-5”是“a+b≠0”的必要不充分條件;
④已知命題p:對任意的x∈R,都有sinx≤1,則?p是:存在x∈R,使得sinx>1;
⑤在△ABC中,若3sinA+4cosB=6,4sinB+3cosA=1,則角C等于30°或150°.
其中所有真命題的個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果投擲兩顆骰子,得到其向上的點數(shù)分別為x和y,則logx(y-1)=1的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中.
(Ⅰ)若E為棱DD1上的點,試確定點E的位置,使平面A1C1E∥B1D;
(Ⅱ)若M為A1B上的一動點,求證:DM∥平面D1B1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法正確的是(  )
A、命題“?x∈R,ex>0”的否定是“?x∈R,ex<0”
B、命題“已知x,y∈R,若x+y≠10”,則x≠5或y≠5是真命題
C、x2+2x≥ax在x∈[0,2]上恒成立?(x2+2x)min≥(ax)min在x∈[0,2]上恒成立”
D、命題:若a=-1,則函數(shù)f(x)=ax2+2x-1只有一個零點的逆命題為真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x2-4x+2,x∈[1,3]的最小值為( 。
A、0B、-1C、-2D、3

查看答案和解析>>

同步練習(xí)冊答案