【題目】已知數(shù)列與滿足.
(1)若,求數(shù)列的通項(xiàng)公式;
(2)若且數(shù)列為公比不為1的等比數(shù)列,求q的值,使數(shù)列也是等比數(shù)列;
(3)若且,數(shù)列有最大值M與最小值,求的取值范圍.
【答案】(1) (2) (3)
【解析】
(1)代入已知條件,即可得到數(shù)列為等差數(shù)列,可求通項(xiàng)公式。
(2)利用迭代,用含的式子表示,根據(jù)為等比數(shù)列,求出的值。
(3)利用累加法可證單調(diào)遞增且單調(diào)遞減即可得到數(shù)列的最大項(xiàng)與最小項(xiàng),即結(jié)合即可求出的取值范圍。
解:(1)由且得,所以數(shù)列為等差數(shù)列.
又,所以:
(2)由條件可知,
所以
不妨設(shè)的公比為,則,
由是等比數(shù)列知:可求出
經(jīng)檢驗(yàn),,此時(shí)是等比數(shù)列,所以滿足條件:
(3)由條件可知,
所以
即,
,因?yàn)?/span>,
所以,則單調(diào)遞增
,則單調(diào)遞減;
又,所以數(shù)列的最大項(xiàng)為,
所以數(shù)列的最小項(xiàng)為.
則,
因?yàn)?/span>,所以,所以.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某班隨機(jī)抽查了20名學(xué)生的數(shù)學(xué)成績(jī),分?jǐn)?shù)制成如圖的莖葉圖,其中A組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間不足1個(gè)小時(shí),B組學(xué)生每天學(xué)習(xí)數(shù)學(xué)時(shí)間達(dá)到一個(gè)小時(shí)。學(xué)校規(guī)定90分及90分以上記為優(yōu)秀,75分及75分以上記為達(dá)標(biāo),75分以下記為未達(dá)標(biāo).
(1)分別求出A、B兩組學(xué)生的平均分、并估計(jì)全班的數(shù)學(xué)平均分;
(2)現(xiàn)在從成績(jī)優(yōu)秀的學(xué)生中任意抽取2人,求這兩人恰好都來(lái)自B組的概率;
(3)根據(jù)成績(jī)得到如下列聯(lián)表:
①直接寫出表中的值;
②判斷是否有的把握認(rèn)為“數(shù)學(xué)成績(jī)達(dá)標(biāo)與否”與“每天學(xué)習(xí)數(shù)學(xué)時(shí)間能否達(dá)到一小時(shí)”有關(guān).
參考公式與臨界值表:K2=.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知直線與圓O:相切.
(1)直線l過(guò)點(diǎn)(2,1)且截圓O所得的弦長(zhǎng)為,求直線l的方程;
(2)已知直線y=3與圓O交于A,B兩點(diǎn),P是圓上異于A,B的任意一點(diǎn),且直線AP,BP與y軸相交于M,N點(diǎn).判斷點(diǎn)M、N的縱坐標(biāo)之積是否為定值?若是,求出該定值;若不是,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),且,對(duì)任意實(shí)數(shù),成立.
(1)求函數(shù)的解析式;
(2)若,解關(guān)于的不等式;
(3)求最大的使得存在,只需,就有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義區(qū)間的長(zhǎng)度均為,其中
(1)若函數(shù)的定義域?yàn)?/span>值域?yàn)?/span>寫出區(qū)間長(zhǎng)度的最大值;
(2)若關(guān)于的不等式組的解集構(gòu)成的各區(qū)間長(zhǎng)度和為6,求實(shí)數(shù)的取值范圍;
(3)已知求證:關(guān)于的不等式的解集構(gòu)成的各區(qū)間的長(zhǎng)度和為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐ABCD中,和都是等邊三角形,平面PAD平面ABCD,且,.
(1)求證:CDPA;
(2)E,F分別是棱PA,AD上的點(diǎn),當(dāng)平面BEF//平面PCD時(shí),求四棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知是數(shù)列的前項(xiàng)和,對(duì)任意,都有;
(1)若,求證:數(shù)列是等差數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;
(2)若,求證:數(shù)列是等比數(shù)列,并求此時(shí)數(shù)列的通項(xiàng)公式;
(3)設(shè),若,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某快遞公司在某市的貨物轉(zhuǎn)運(yùn)中心,擬引進(jìn)智能機(jī)器人分揀系統(tǒng),以提高分揀效率和降低物流成本,已知購(gòu)買x臺(tái)機(jī)器人的總成本為萬(wàn)元.
(1)若使每臺(tái)機(jī)器人的平均成本最低,問(wèn)應(yīng)買多少臺(tái)?
(2)現(xiàn)按(1)中的數(shù)量購(gòu)買機(jī)器人,需要安排m人將郵件放在機(jī)器人上,機(jī)器人將郵件送達(dá)指定落袋格口完成分揀(如圖).經(jīng)實(shí)驗(yàn)知,每臺(tái)機(jī)器人的日平均分揀量為,(單位:件).已知傳統(tǒng)的人工分揀每人每日的平均分揀量為1200件,問(wèn)引進(jìn)機(jī)器人后,日平均分揀量達(dá)最大時(shí),用人數(shù)量比引進(jìn)機(jī)器人前的用人數(shù)量最多可減少百分之幾?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)的圖象與的圖象關(guān)于對(duì)稱.
(1)若關(guān)于的方程在上有解,求實(shí)數(shù)的取值范圍;
(2)若,求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com