【題目】已知矩形,為中點(diǎn),將至折起,連結(jié).
(1)當(dāng)時,求證:;
(2)當(dāng)時,求二面角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由線面垂直的判定定理可證平面,再由線面垂直的性質(zhì)定理可知,進(jìn)而由線面垂直的判定定理可證平面,最后由線面垂直的性質(zhì)定理可證;
(2)過點(diǎn)作直線平面,以點(diǎn)為原點(diǎn),分別以所在直線為軸、軸、軸,建立空間直角坐標(biāo)系,設(shè),的坐標(biāo)為,由已知關(guān)系構(gòu)建三元一次方程組求得,再分別計(jì)算平面和平面的法向量,最后由數(shù)量積公式求夾角的余弦值即可.
(1)證明:由題意可知,
,平面,平面,所以平面,
又平面,所以,
因?yàn)?/span>,平面,平面,
所以平面,
又平面.所以.
(2)過點(diǎn)作直線平面,以點(diǎn)為原點(diǎn),分別以所在直線為軸、軸、軸,建立空間直角坐標(biāo)系,設(shè),
則,設(shè)點(diǎn)的坐標(biāo)為,則的坐標(biāo)為,
①
又 ②,
③
解由①②③構(gòu)成的方程組可得,即點(diǎn)的坐標(biāo)
進(jìn)而
設(shè)平面的一個法向量為,可得
所以,令,解得,即,
易知,平面的一個法向量,
,
由圖可知,二面角的大小為銳角,
二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義:從數(shù)列{an}中抽取m(m∈N,m≥3)項(xiàng)按其在{an}中的次序排列形成一個新數(shù)列{bn},則稱{bn}為{an}的子數(shù)列;若{bn}成等差(或等比),則稱{bn}為{an}的等差(或等比)子數(shù)列.
(1)記數(shù)列{an}的前n項(xiàng)和為Sn,已知.
①求數(shù)列{an}的通項(xiàng)公式;
②數(shù)列{an}是否存在等差子數(shù)列,若存在,求出等差子數(shù)列;若不存在,請說明理由.
(2)已知數(shù)列{an}的通項(xiàng)公式為an=n+a(a∈Q+),證明:{an}存在等比子數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點(diǎn)到直線的距離為,過點(diǎn)的直線與交于、兩點(diǎn).
(1)求拋物線的準(zhǔn)線方程;
(2)設(shè)直線的斜率為,直線的斜率為,若,且與的交點(diǎn)在拋物線上,求直線的斜率和點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】過正四面體ABCD的頂點(diǎn)A作一個形狀為等腰三角形的截面,且使截面與底面BCD所成的角為,這樣的截面有( )
A.6個B.12個C.16個D.18個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,、分別是其左、右焦點(diǎn),過的直線與橢圓交于兩點(diǎn),且橢圓的離心率為,的周長等于.
(1)求橢圓的方程;
(2)當(dāng)時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年寒假是特殊的寒假,因?yàn)橐咔槿w學(xué)生只能在家進(jìn)行網(wǎng)上在線學(xué)習(xí),為了研究學(xué)生在網(wǎng)上學(xué)習(xí)的情況,某學(xué)校在網(wǎng)上隨機(jī)抽取120名學(xué)生對線上教育進(jìn)行調(diào)查,其中男生與女生的人數(shù)之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯(lián)表,并回答能否有99%的把握認(rèn)為對“線上教育是否滿意與性別有關(guān)”;
滿意 | 不滿意 | 總計(jì) | |
男生 | |||
女生 | |||
合計(jì) | 120 |
(2)從被調(diào)查中對線上教育滿意的學(xué)生中,利用分層抽樣抽取8名學(xué)生,再在8名學(xué)生中抽取3名學(xué)生,作線上學(xué)習(xí)的經(jīng)驗(yàn)介紹,其中抽取男生的個數(shù)為,求出的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著網(wǎng)上購物的普及,傳統(tǒng)的實(shí)體店遭受到了強(qiáng)烈的沖擊,某商場實(shí)體店近九年來的純利潤如下表所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
時間代號 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
實(shí)體店純利潤(千萬) | 2 | 2.3 | 2.5 | 2.9 | 3 | 2.5 | 2.1 | 1.7 | 1.2 |
根據(jù)這9年的數(shù)據(jù),對和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對值為0.254;根據(jù)后5年的數(shù)據(jù),對和作線性相關(guān)性檢驗(yàn),求得樣本相關(guān)系數(shù)的絕對值為0.985;
(1)如果要用線性回歸方程預(yù)測該商場2019年實(shí)體店純利潤,現(xiàn)有兩個方案:
方案一:選取這9年的數(shù)據(jù),進(jìn)行預(yù)測;
方案二:選取后5年的數(shù)據(jù)進(jìn)行預(yù)測.
從生活實(shí)際背景以及相關(guān)性檢驗(yàn)的角度分析,你覺得哪個方案更合適.
附:相關(guān)性檢驗(yàn)的臨界值表:
小概率 | ||
0.05 | 0.01 | |
3 | 0.878 | 0.959 |
7 | 0.666 | 0.798 |
(2)某機(jī)構(gòu)調(diào)研了大量已經(jīng)開店的店主,據(jù)統(tǒng)計(jì),只開網(wǎng)店的占調(diào)查總?cè)藬?shù)的,既開網(wǎng)店又開實(shí)體店的占調(diào)查總?cè)藬?shù)的,現(xiàn)以此調(diào)查統(tǒng)計(jì)結(jié)果作為概率,若從上述統(tǒng)計(jì)的店主中隨機(jī)抽查了5位,求只開實(shí)體店的人數(shù)的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在從100到999的所有三位數(shù)中,百位、十位、個位數(shù)字依次構(gòu)成等差數(shù)列的有__________個;構(gòu)成等比數(shù)列的有__________個.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】
已知函數(shù)(是自然對數(shù)的底數(shù)).
(1)若曲線在處的切線也是拋物線的切線,求的值;
(2)若對于任意恒成立,試確定實(shí)數(shù)的取值范圍;
(3)當(dāng)時,是否存在,使曲線在點(diǎn)處的切線斜率與在上的最小值相等?若存在,求符合條件的的個數(shù);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com