如圖,在直三棱柱ABC-A1B1C1中,E,F(xiàn)分別是A1B,A1C的中點(diǎn),點(diǎn)D在B1C1上,A1D⊥B1C.求證:
(1)EF平面ABC;
(2)平面A1FD⊥平面BB1C1C.
證明:(1)因?yàn)镋,F(xiàn)分別是A1B,A1C的中點(diǎn),
所以EFBC,又EF?面ABC,BC?面ABC,所以EF平面ABC;
(2)因?yàn)橹比庵鵄BC-A1B1C1,所以BB1⊥面A1B1C1,BB1⊥A1D,
又A1D⊥B1C,BB1∩B1C=B1,所以A1D⊥面BB1C1C,又A1D?面A1FD,所以平面A1FD⊥平面BB1C1C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐E-ABCD中,底面ABCD為矩形,平面ABCD⊥平面ABE,∠AEB=90°,BE=BC,F(xiàn)為CE的中點(diǎn),求證:
(1)AE平面BDF;
(2)平面BDF⊥平面ACE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知PA⊥矩形ABCD所在平面,M、N分別為AB、PC的中點(diǎn);
(Ⅰ)求證:MN平面PAD;
(Ⅱ)求證:MN⊥CD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知直三棱柱ABC-A1B1C1中,△ABC為等腰直角三角形,且∠BAC=90°,且AB=AA1,D,E,F(xiàn)分別為B1A,C1C,BC的中點(diǎn).
(Ⅰ)求證:DE平面ABC;
(Ⅱ)求證:B1F⊥平面AEF;
(Ⅲ)求二面角A-EB1-F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖所示,已知ABCD是直角梯形,∠ABC=90°,ADBC,AD=2,AB=BC=1,PA⊥平面ABCD.
(1)證明:PC⊥CD;
(2)若E是PA的中點(diǎn),證明:BE平面PCD;
(3)若PA=3,求三棱錐B-PCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,O為底面ABCD的中心,P是DD1的中點(diǎn),設(shè)Q是CC1上的點(diǎn),問(wèn):當(dāng)點(diǎn)Q在什么位置時(shí),平面D1BQ平面PAO?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

平面α與平面β平行的條件可以是( 。
A.平面α內(nèi)有無(wú)窮多條直線與β平行
B.直線lα,且lβ
C.直線l?α,m?β,且lβ,mα
D.平面α內(nèi)的任何直線都平行于β

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正方體ABCD-A1B1C1D1中,E,F(xiàn),M分別是BB1,CC1與AB的中點(diǎn),
(1)求證:AE平面A1DF;
(2)求證:A1M⊥平面AED;
(3)正方體棱長(zhǎng)為2,求三棱錐A1-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知在三棱錐P-ABC中,PA⊥BC,PB⊥AC,則點(diǎn)P在平面ABC上的射影為△ABC的( 。
A.重心B.外心C.內(nèi)心D.垂心

查看答案和解析>>

同步練習(xí)冊(cè)答案