(本題12分)已知數(shù)列{an}中,a1=0,a2 =4,且an+2-3an+1+2an= 2n+1(),
數(shù)列{bn}滿足bn=an+1-2an.
(Ⅰ)求證:數(shù)列{-}是等比數(shù)列;
(Ⅱ)求數(shù)列{}的通項公式;
(Ⅲ)求.
解:(Ⅰ)由an+2-3an+1+2an= 2n+1 得(an+2-2an+1)-( an+1-2an)= 2n+1;
即 bn+1-bn = 2n+1,而 b1=a2-2a1=4, b2 =b1+22=8;
∴ { bn+1-bn}是以4為首項,以2為公比的等比數(shù)列.…………………3分
(Ⅱ)由(Ⅰ),bn+1-bn = 2n+1, b1=4,
∴ bn = (bn-bn-1)+ (bn-1-bn-2)+···+(b2-b1) + b1
=2n + 2n-1 +···+22 +4 = 2n+1. ………………………6分
即 an+1-2an=2n+1,∴;
∴ {}是首項為0,公差為1的等差數(shù)列,
則,∴. ………………………9分
(Ⅲ)∵,
∴. ………………………12分
解析
科目:高中數(shù)學(xué) 來源: 題型:
(本題12分)已知數(shù)列是等差數(shù)列,a2 = 3,a5 = 6,數(shù)列的前n項和是Tn,且Tn +.
(1)求數(shù)列的通項公式與前n項的和Mn;
(2)求數(shù)列的通項公式;
(3)記cn =,求的前n項和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011屆山東省濟(jì)寧市一中高三年級第二次質(zhì)量檢測數(shù)學(xué)文卷 題型:解答題
(本題12分)
已知數(shù)列的前n項和為,且滿足,
(1)求證:是等差數(shù)列;
(2)求的表達(dá)式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省襄樊四校高三期中考試?yán)砜茢?shù)學(xué)試卷 題型:解答題
(本題12分)已知數(shù)列的前項和,且是和1的等差中項。
(1)求數(shù)列與的通項公式;
(2)若,求;
(3)若是否存在,使?說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年湖北省襄樊四校高三期中考試文科數(shù)學(xué)試卷 題型:解答題
(本題12分)已知數(shù)列的前項和且是和1的等差中項。
(1)求數(shù)列與的通項公式;
(2)若,求;
(3)若是否存在,使?說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com