(本小題滿分13分)
提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)
流速度v(單位:千米/小時(shí))是車(chē)流密度 x(單位:輛/千米)的函數(shù).當(dāng)橋上的車(chē)流密度達(dá)
到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速
度為60千米/小時(shí).研究表明當(dāng)20≤x≤200時(shí),車(chē)流速度v是車(chē)流密度x的一次函數(shù).
(1)當(dāng)0≤x≤200時(shí),求函數(shù)v(x)的表達(dá)式;
(2)當(dāng)車(chē)流密度x為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車(chē)輛數(shù),單位:輛/小時(shí))f(x)=x·v(x)可以達(dá)到最大,并求出最大值.(精確到1輛/小時(shí))

解:(1)由題意:當(dāng)0≤x≤20時(shí),v(x)=60;  
當(dāng)20≤x≤200時(shí),設(shè)v(x)=ax+b.
再由已知得解得        ………4分
故函數(shù)v(x)的表達(dá)式為 
……………………6分
(2)依題意并由(1)可得
………………………………………8分
當(dāng)0≤x≤20時(shí),f(x)為增函數(shù),
故當(dāng)x=20時(shí),其最大值為60×20=1200;……9分當(dāng)20≤x≤200時(shí),f(x)=x(200-x)≤.當(dāng)且僅當(dāng)x=200-x,即x=100時(shí),等號(hào)成立.所以,當(dāng)x=100時(shí),f(x)在區(qū)間[20,200]上取得最大值..13分

解析

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分10分) 如圖,有一塊矩形空地,要在這塊空地上辟一個(gè)內(nèi)接四邊形為綠地,使其四個(gè)頂點(diǎn)分別落在矩形的四條邊上,已知AB=>2),BC=2,且AE=AH=CF=CG,
設(shè)AE=,綠地面積為.
(1)寫(xiě)出關(guān)于的函數(shù)關(guān)系式,并指出這個(gè)函數(shù)的定義域;
(2)當(dāng)AE為何值時(shí),綠地面積最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本題滿分12分)設(shè)函數(shù)是定義在上的減函數(shù),并且滿足,
(1)求,,的值,(2)如果,求x的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

某品牌電視生產(chǎn)廠家有A、B兩種型號(hào)的電視機(jī)參加了家電下鄉(xiāng)活動(dòng),若廠家A、B對(duì)兩種型號(hào)的電視機(jī)的投放金額分別為p、q萬(wàn)元,農(nóng)民購(gòu)買(mǎi)電視機(jī)獲得的補(bǔ)貼分別為p、lnq萬(wàn)元,已知A、B兩種型號(hào)的電視機(jī)的投放總額為10萬(wàn)元,且A、B兩種型號(hào)的電視機(jī)的投放金額均不低于1萬(wàn)元,請(qǐng)你制定一個(gè)投放方案,使得在這次活動(dòng)中農(nóng)民得到的補(bǔ)貼最多,并求出最大值(精確到0.1,參考數(shù)據(jù):).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)集合;
(1)若,求的取值范圍;
(2)求函數(shù)的最值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知函數(shù)
(1)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/0b/7/1lrfx2.gif" style="vertical-align:middle;" />,求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),函數(shù)恒有意義,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)函數(shù)
(1)若且對(duì)任意實(shí)數(shù)均有成立,求表達(dá)式;
(2)在(1)的條件下,當(dāng)時(shí),是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本大題12分)已知二次函數(shù).
(1)判斷命題:“對(duì)于任意的R(R為實(shí)數(shù)集),方程必有實(shí)數(shù)根”的真假,并寫(xiě)出判斷過(guò)程
(2),若在區(qū)間內(nèi)各有一個(gè)零點(diǎn).求實(shí)數(shù)a的范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

(本小題12分)計(jì)算下列各式的值:
(1); (2)

查看答案和解析>>

同步練習(xí)冊(cè)答案