設(shè),其中f(x)=lnx,且g(e)=.(e為自然對數(shù)的底數(shù))
(I)求p與q的關(guān)系;
(Ⅱ)若g(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(Ⅲ)證明:
①f(1+x)≤x(x>-1);
(n∈N,n≥2).
【答案】分析:對于(I)求p與q的關(guān)系;因?yàn)橛梢阎梢院苋菀浊蟪龊瘮?shù)g(x)的表達(dá)式,在把x=e代入函數(shù)得關(guān)系式,化簡即可得到答案.
對于(II)若g(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;因?yàn)橐阎猤(x)的函數(shù)表達(dá)式,可以直接求解導(dǎo)函數(shù),當(dāng)導(dǎo)函數(shù)恒大于等于0,或者恒小于等于0的時(shí)候,即單調(diào).故可分類討論當(dāng)p=0,p>0,p<0時(shí)滿足函數(shù)單調(diào)的p的值,求它們的并集即可得到答案.
對于(III)證明:①f(1+x)≤x(x>-1),可根據(jù)函數(shù)的單調(diào)性直接證明.
(n∈N,n≥2).因?yàn)橛散僦猯nx≤x-1,又x>0,所以有,令x=n2
得到不等式..代入原不等式化簡求解即可得到答案.
解答:解:(I)由題意,
又g(e)=,∴
,∴
,∴p=q
(II)由(I)知:,
令h(x)=px2-2x+p.要使g(x)在(0,+∞)為單調(diào)函數(shù),只需h(x)在(0,+∞)滿足:
h(x)≥0或h(x)≤0恒成立.
①p=0時(shí),h(x)=-2x,∵x>0,∴h(x)<0,∴g'(x)=,
∴g(x)在(0,+∞)單調(diào)遞減,∴p=0適合題意.
②當(dāng)p>0時(shí),h(x)=px2-2x+p圖象為開口向上拋物線,
稱軸為x=∈(0,+∞).∴h(x)min=p-.只需p-≥0,即p≥1時(shí)h(x)≥0,g′(x)≥0,
∴g(x)在(0,+∞)單調(diào)遞增,∴p≥1適合題意.
③當(dāng)p<0時(shí),h(x)=px2-2x+p圖象為開口向下的拋物線,其對稱軸為x=∉(0,+∞),
只需h(0)≤0,即p≤0時(shí)h(0)≤(0,+∞)恒成立.
∴g′(x)<0,∴g(x)在(0,+∞)單調(diào)遞減,∴p<0適合題意.
綜上①②③可得,p≥1或p≤0.
(III)證明:①即證:lnx-x+1≤0(x>0),
設(shè)k(x)=lnx-x+1,則k'(x)=
當(dāng)x∈(0,1)時(shí),k′(x)>0,∴k(x)為單調(diào)遞增函數(shù);
當(dāng)x∈(1,∞)時(shí),k′(x)<0,∴k(x)為單調(diào)遞減函數(shù);
∴x=1為k(x)的極大值點(diǎn),∴k(x)≤k(1)=0.即lnx-x+1≤0,
所以lnx≤x-1得證.
②由①知lnx≤x-1,又x>0,
∵n∈N*,n≥2時(shí),令x=n2,

,

=
=
==
所以得證.
點(diǎn)評(píng):此題主要考查函數(shù)的概念及由函數(shù)單調(diào)性證明不等式的問題,題目共有三問,涵蓋知識(shí)點(diǎn)多,計(jì)算量大,對學(xué)生靈活性要求較高,屬于難題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紹興模擬)已知函數(shù)f(x)=e2x-2a
x
 
2
+2e2x
,其中e為自然對數(shù)的底數(shù).
(I)若函數(shù)f(x)在[1,2]上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)設(shè)曲線y=f(x)在點(diǎn)P(1,f(1))處的切線為l.試問:是否存在正實(shí)數(shù)a,使得函數(shù)y=f(x)的圖象被點(diǎn)P分割成的兩部分(除點(diǎn)P外)完全位于切線l的兩側(cè)?若存在,請求出a滿足的條件,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①半徑為2,圓心角的弧度數(shù)為
1
2
的扇形的周長為5;    
②若向量
a
b
b
c
,則
a
c

③設(shè)f(x)=asin(πx+α)+bcos(πx+β),其中a,b,α,β∈R,且ab≠0,α≠kπ。╧∈Z).則f(2012)+f(2013)=0.
④若直線l過點(diǎn)A(2,3),且垂直于向量a=(2,1),則其方程為2x+y-7=0
其中真命題的序號(hào)是
①③④
①③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=xlnx.
(Ⅰ)若直線l過點(diǎn)(0,1),并且與曲線y=f(x)相切,求直線l的方程;
(Ⅱ)設(shè)函數(shù)g(x)=f(x)-a(x-1),其中a∈R,求函數(shù)g(x)在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)數(shù)學(xué)公式,其中e為自然對數(shù)的底數(shù).
(I)若函數(shù)f(x)在[1,2]上為單調(diào)增函數(shù),求實(shí)數(shù)a的取值范圍;
(II)設(shè)曲線y=f(x)在點(diǎn)P(1,f(1))處的切線為l.試問:是否存在正實(shí)數(shù)a,使得函數(shù)y=f(x)的圖象被點(diǎn)P分割成的兩部分(除點(diǎn)P外)完全位于切線l的兩側(cè)?若存在,請求出a滿足的條件,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

  已知函數(shù)f(x)=(k為常數(shù),e=2.71828…是自然對數(shù)的底數(shù)),曲線y=f(x)在點(diǎn)(l,f(l))處的切線與x軸平行.

  (Ⅰ)求k的值;

  (Ⅱ)求f(x)的單調(diào)區(qū)間;

  (Ⅲ)設(shè)g(x)=xf′(x),其中f′(x)為f(x)的導(dǎo)函數(shù).證明:對任意0<x<1,g(x)<1 +e-2

查看答案和解析>>

同步練習(xí)冊答案