【題目】已知f(x)是定義在R上的奇函數(shù),且f(x+2)=f(x﹣2);當(dāng)0≤x≤1時(shí),f(x)= ,則f(1)+f(2)+f(3)+…+f等于(
A.﹣1
B.0
C.1
D.2

【答案】C
【解析】解:由f(x+2)=f(x﹣2)得f(x+4)=f(x),則函數(shù)是周期為4的周期函數(shù),

∵f(x)是定義在R上的奇函數(shù),

∴當(dāng)0≤x≤1時(shí),f(x)= ,則f(0)=0,f(1)=1,

當(dāng)x=0時(shí),f(2)=f(﹣2)=﹣f(2),則f(2)=0,

f(3)=f(3﹣4)=f(﹣1)=﹣f(1)=﹣1,

f(4)=f(0)=0,

則在一個(gè)周期內(nèi)f(1)+f(2)+f(3)+f(4)=1+0﹣1+0=0,

則f(1)+f(2)+f(3)+…+f=504[f(1)+f(2)+f(3)+f(4)]+f

=f=f(1)=1,

故選:C.

【考點(diǎn)精析】本題主要考查了函數(shù)奇偶性的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握在公共定義域內(nèi),偶函數(shù)的加減乘除仍為偶函數(shù);奇函數(shù)的加減仍為奇函數(shù);奇數(shù)個(gè)奇函數(shù)的乘除認(rèn)為奇函數(shù);偶數(shù)個(gè)奇函數(shù)的乘除為偶函數(shù);一奇一偶的乘積是奇函數(shù);復(fù)合函數(shù)的奇偶性:一個(gè)為偶就為偶,兩個(gè)為奇才為奇才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】直線mx+ny=1與圓x2+y2=4的交點(diǎn)為整點(diǎn)(橫縱坐標(biāo)均為正數(shù)的點(diǎn)),這樣的直線的條數(shù)是(
A.2
B.4
C.6
D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)判斷: ①某校高三一班和高三二班的人數(shù)分別是m,n,某次測(cè)試數(shù)學(xué)平均分分別是a,b,則這兩個(gè)班的數(shù)學(xué)平均分為
②10名工人某天生產(chǎn)同一零件的件數(shù)分別是15,17,14,10,15,17,17,16,14,12,設(shè)其平均數(shù)為a,中位數(shù)為b,眾數(shù)為c,則有c>a>b;
③從總體中抽取的樣本為 ,則回歸直線 必過(guò)點(diǎn)(
④已知ξ服從正態(tài)分布N(0,σ2),且P(﹣2≤ξ≤0)=4,則P(ξ>2)=0.2
其中正確的個(gè)數(shù)有(
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在(0,+∞)上的函數(shù) ,其中a>0.設(shè)兩曲線y=f(x)與y=g(x)有公共點(diǎn),且在公共點(diǎn)處的切線相同.則b的最大值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=kex﹣x2(其中k∈R,e是自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若k<0,試判斷函數(shù)f(x)在區(qū)間(0,+∞)上的單調(diào)性;
(Ⅱ)若k=2,當(dāng)x∈(0,+∞)時(shí),試比較f(x)與2的大;
(Ⅲ)若函數(shù)f(x)有兩個(gè)極值點(diǎn)x1 , x2(x1<x2),求k的取值范圍,并證明0<f(x1)<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知等差數(shù)列{an}中,a1=1,且a1 , a2 , a4+2成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式及其前n項(xiàng)和Sn
(2)設(shè) ,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=log2(3+x)﹣log2(3﹣x),
(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)已知f(sinα)=1,求α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=aexlnx+ ,曲線y=f(x)在點(diǎn)(1,f(1))處得切線方程為y=e(x﹣1)+2.
(Ⅰ)求a、b;
(Ⅱ)證明:f(x)>1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某地電影院為了了解當(dāng)?shù)赜懊詫?duì)快要上映的一部電影的票價(jià)的看法,進(jìn)行了一次調(diào)研,得到了票價(jià)x(單位:元)與渴望觀影人數(shù)y(單位:萬(wàn)人)的結(jié)果如下表:

(1)請(qǐng)根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(2)根據(jù)(1)中求出的線性回歸方程,若票價(jià)定為70元,預(yù)測(cè)該電影院渴望觀影人數(shù).附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:

查看答案和解析>>

同步練習(xí)冊(cè)答案