【題目】已知函數(shù)f(x)=x2-1,g(x)=

(1)求f[g(2)]和g[f(2)]的值;

(2)求f[g(x)]和g[f(x)]的表達式.

【答案】(1)0 2

(2)f[g(x)]=

g[f(x)]=

【解析】解:(1)由已知,g(2)=1,f(2)=3,

f[g(2)]=f(1)=0,g[f(2)]=g(3)=2.

(2)當x>0時,g(x)=x-1,故f[g(x)]=(x-1)2-1=x2-2x;

當x<0時,g(x)=2-x,故f[g(x)]=(2-x)2-1=x2-4x+3;

f[g(x)]=

當x>1或x<-1時,f(x)>0,故g[f(x)]=f(x)-1=x2-2;

當-1<x<1時,f(x)<0,故g[f(x)]=2-f(x)=3-x2.

g[f(x)]=

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】選修:不等式選講

已知函數(shù)fx=|2x+3|+|2x﹣1|

)求不等式fx)<8的解集;

若關于x的不等式fx≤|3m+1|有解,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,已知邊長為米的正方形鋼板有一個角被銹蝕,其中米, 米.為了合理利用這塊鋼板,將在五邊形內(nèi)截取一個矩形塊,使點在邊上.

1)設米, 米,將表示成的函數(shù),求該函數(shù)的解析式及定義域;

2)求矩形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在上的奇函數(shù),且時, ,則函數(shù)為自然對數(shù)的底數(shù))的零點個數(shù)是( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)yf(x)是定義在(0,+)上的遞增函數(shù),對于任意的x>0y>0,都有f(xy)f(x)f(y),且滿足f(2)1.

(1)f(1)f(4)的值;

(2)求滿足f(2)f(x3)2x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}a13,a1021,通項an相應的函數(shù)是一次函數(shù).

(1) 求數(shù)列{an}的通項公式;

(2) {bn}是由a2,a4a6,a8,…組成,試求數(shù)列{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理科考生參加自主招生面試,從7道題中(4道理科題3道文科題)不放回地依次任取3道作答.

1)求該考生在第一次抽到理科題的條件下,第二次和第三次均抽到文科題的概率;

2)規(guī)定理科考生需作答兩道理科題和一道文科題,該考生答對理科題的概率均為,答對文科題的概率均為,若每題答對得10分,否則得零分.現(xiàn)該生已抽到三道題(兩理一文),求其所得總分的分布列與數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】祖暅原理:“冪勢既同,則積不容異”.它是中國古代一個涉及幾何體體積的問題,意思是兩個同高的幾何體,如在等高處的截面積恒相等,則體積相等.設為兩個同高的幾何體,的體積不相等,在等高處的截面積不恒相等,根據(jù)祖暅原理可知,的( )

A. 充分不必要條件 B. 必要不充分條件

C. 充要條件 D. 既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以坐標原點為極點,軸的非負半軸為極軸建立極坐標系,已知曲線的極坐標方程為,它在點處的切線為直線

(Ⅰ)求直線的直角坐標方程;

(Ⅱ)已知點為橢圓上一點,求點到直線的距離的取值范圍.

查看答案和解析>>

同步練習冊答案