精英家教網 > 高中數學 > 題目詳情

設函數,其對應的圖像為曲線C;若曲線C過,且在點處的切斜線率
(1)求函數的解析式
(2)證明不等式.

(1) ;(2)詳見解析.

解析試題分析:(1)由題設可得兩個方程: ①,  ②.解這個方程組,求得的值,便得函數的解析式.(2)要證明不等式只需證)的最大值小于等于0即可,而利用導數很易求得的最大值,從而使問題得證.
試題解析:(1)由 
∵曲線C過     ∴   ①                 2分
又∵曲線C在點處的切斜線率
  ②                          4分
聯(lián)立①②解之得                       5分
∴函數的解析式為              6分
(2)由(1)知其定義域為
),則         8分

),解之得         10分
∴函數 上單調遞增,在 上單調遞減,    12分
,所以的最大值為0,故當時,.  13分
考點:導數的應用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

設函數,
(1)當時,函數取得極值,求的值;
(2)當時,求函數在區(qū)間[1,2]上的最大值;
(3)當時,關于的方程有唯一實數解,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數時取得極值.
(1)求a、b的值;
(2)若對于任意的,都有成立,求c的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,
(Ⅰ)若函數存在極值點,求實數的取值范圍;
(Ⅱ)求函數的單調區(qū)間;
(Ⅲ)當時,令,(),()為曲線上的兩動點,O為坐標原點,能否使得是以O為直角頂點的直角三角形,且斜邊中點在y軸上?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數在定義域內為增函數,求實數的取值范圍;
(2)設,若函數存在兩個零點,且實數滿足,問:函數處的切線能否平行于軸?若能,求出該切線方程;若不能,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數為自然對數的底數).
(Ⅰ)求函數的單調區(qū)間;
(Ⅱ)當時,若對任意的恒成立,求實數的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(Ⅰ)若處的切線與直線平行,求的單調區(qū)間;
(Ⅱ)求在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)的導函數為f ′(x),且對任意x>0,都有f ′(x)>
(Ⅰ)判斷函數F(x)=在(0,+∞)上的單調性;
(Ⅱ)設x1,x2∈(0,+∞),證明:f(x1)+f(x2)<f(x1+x2);
(Ⅲ)請將(Ⅱ)中的結論推廣到一般形式,并證明你所推廣的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數均為正常數),設函數處有極值.
(1)若對任意的,不等式總成立,求實數的取值范圍;
(2)若函數在區(qū)間上單調遞增,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案