已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x≥0時(shí),f(x)=x2+4x.
(1)求函數(shù)f(x)的解析式;
(2)已知a為實(shí)數(shù),且f(a2-a)<f(4a-4),求函數(shù)g(x)=
x
(x-a)在區(qū)間[0,2]上的最小值.
分析:(1)利用奇函數(shù)的定義即可求得當(dāng)x<0時(shí)的解析式.
(2)據(jù)函數(shù)f(x)的解析式,先證明函數(shù)f(x)在R上的單調(diào)性,即可求出a的取值范圍.再對(duì)函數(shù)g(x)求導(dǎo)并求出極值,進(jìn)而可求得最小值.
解答:解1)設(shè)x<0,則-x>0,由已知可得:f(-x)=(-x)2-4x.
∵函數(shù)f(x)是定義在R上的奇函數(shù),∴f(x)=-f(-x)=-(x2-4x)=-x2+4x.
所以函數(shù)的解析式為:f(x)=
x2+4x,當(dāng)x≥0時(shí)
-x2+4x,當(dāng)x<0時(shí)

(2)當(dāng)x≥0時(shí),f(x)=(x+2)2-4,∴函數(shù)f(x)在區(qū)間[0,+∞)上單調(diào)遞增;
同理可得:當(dāng)x<0時(shí),函數(shù)f(x)在區(qū)間(-∞,0)上單調(diào)遞增.由函數(shù)f(x)在x=0時(shí)連續(xù),
∴函數(shù)f(x)在R上單調(diào)遞增.
∵實(shí)數(shù)a滿(mǎn)足f(a2-a)<f(4a-4),
∴a2-a<4a-4,解得1<a<4.
x
=t
,∵x∈[0,2],∴t∈[0,
2
]

∴y=t(t2-a),∴y′=3t2-a.
令y′=0,則t=
a
3
,
又∵1<a<4,∴
1
3
a
3
4
3
,∴t=
a
3
∈[0,
2
]

當(dāng)t∈[0,
a
3
)
時(shí),y′<0;當(dāng)t∈(
a
3
,
2
]
時(shí),y′>0.
∴函數(shù)y=t3-at在區(qū)間[0,
a
3
]上單調(diào)遞減;在區(qū)間[
a
3
,
2
]
上單調(diào)遞增.
∴函數(shù)y=t3-at在t=
a
3
,即x=
a
3
時(shí)取得最小值為-
2a
3a
9
點(diǎn)評(píng):本題綜合考查了函數(shù)的奇偶性、單調(diào)性及最值,充分理解以上性質(zhì)和掌握利用導(dǎo)數(shù)求最值的方法是解決問(wèn)題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2
,
(1)計(jì)算:[f(1)]2-[g(1)]2
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域?yàn)椋?,+∞),且f(2)=2+
2
2
.設(shè)點(diǎn)P是函數(shù)圖象上的任意一點(diǎn),過(guò)點(diǎn)P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問(wèn):|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請(qǐng)說(shuō)明理由.
(3)設(shè)O為坐標(biāo)原點(diǎn),求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P滿(mǎn)足2
OP
=
OM
+
ON
(O為坐標(biāo)原點(diǎn)).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn;
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點(diǎn),且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個(gè)相鄰函數(shù)的交點(diǎn)為A,B,若m變化時(shí),AB的長(zhǎng)度是一個(gè)定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案