【題目】已知點(diǎn)是橢圓上任一點(diǎn),點(diǎn)到直線:的距離為,到點(diǎn)的距離為,且,若直線與橢圓交于不同兩點(diǎn)、(、都在軸上方),且.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)當(dāng)為橢圓與軸正半軸的交點(diǎn)時(shí),求直線的方程;
(3)對(duì)于動(dòng)直線,是否存在一個(gè)定點(diǎn),無(wú)論如何變化,直線總經(jīng)過(guò)此定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3)存在,.
【解析】
(1)利用題意結(jié)合距離公式整理計(jì)算即可求得橢圓方程;
(2)首先求得點(diǎn)的坐標(biāo),然后結(jié)合直線的斜率即可求得直線方程;
(3)聯(lián)立直線與橢圓的方程,結(jié)合韋達(dá)定理和題意整理計(jì)算即可證得直線過(guò)定點(diǎn).
解:(1)設(shè),則,,
,
化簡(jiǎn)得:,
橢圓的方程為:.
(2),,
,,
,,
代入橢圓方程得:,
,或,代入得,(舍去),或,
,據(jù)此可得:,,
(3)直線恒過(guò)定點(diǎn),證明如下:
由于,所以關(guān)于軸的對(duì)稱點(diǎn)在直線上.
設(shè),,,,,
設(shè)直線方程:,代入橢圓方程,
得:,故:
,
則直線的方程為:,
令,得:,
,,則:
.
直線總經(jīng)過(guò)定點(diǎn).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在三棱錐DABC中,ADDC,ACCB,AB=2AD=2DC=2,且平面ABD平面BCD,E為AC的中點(diǎn).
(I)證明:ADBC;
(II)求直線 DE 與平面ABD所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系(),點(diǎn)為曲線上的動(dòng)點(diǎn),點(diǎn)在線段的延長(zhǎng)線上,且滿足,點(diǎn)的軌跡為。
(Ⅰ)求的極坐標(biāo)方程;
(Ⅱ)設(shè)點(diǎn)的極坐標(biāo)為,求面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了反映國(guó)民經(jīng)濟(jì)各行業(yè)對(duì)倉(cāng)儲(chǔ)物流業(yè)務(wù)的需求變化情況,以及重要商品庫(kù)存變化的動(dòng)向,中國(guó)物流與采購(gòu)聯(lián)合會(huì)和中儲(chǔ)發(fā)展股份有限公司通過(guò)聯(lián)合調(diào)查,制定了中國(guó)倉(cāng)儲(chǔ)指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國(guó)倉(cāng)儲(chǔ)指數(shù)走勢(shì)情況.
根據(jù)該折線圖,下列結(jié)論正確的是
A. 2016年各月的倉(cāng)儲(chǔ)指數(shù)最大值是在3月份
B. 2017年1月至12月的倉(cāng)儲(chǔ)指數(shù)的中位數(shù)為54%
C. 2017年1月至4月的倉(cāng)儲(chǔ)指數(shù)比2016年同期波動(dòng)性更大
D. 2017年11月的倉(cāng)儲(chǔ)指數(shù)較上月有所回落,顯示出倉(cāng)儲(chǔ)業(yè)務(wù)活動(dòng)仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在著名的漢諾塔問(wèn)題中,有三根高度相同的柱子和一些大小及顏色各不相同的圓盤,三根柱子分別為起始柱、輔助柱及目標(biāo)柱.已知起始柱上套有個(gè)圓盤,較大的圓盤都在較小的圓盤下面.現(xiàn)把圓盤從起始柱全部移到目標(biāo)柱上,規(guī)則如下:每次只能移動(dòng)一個(gè)圓盤,且每次移動(dòng)后,每根柱上較大的圓盤不能放在較小的圓盤上面,規(guī)定一個(gè)圓盤從任一根柱上移動(dòng)到另一根柱上為一次移動(dòng).若將個(gè)圓盤從起始柱移動(dòng)到目標(biāo)柱上最少需要移動(dòng)的次數(shù)記為,則( )
A. 33B. 31C. 17D. 15
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,,,平面平面.
(1)求證:;
(2)若,直線與平面所成角為,為的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】棋盤上標(biāo)有第0,1,2,,100站,棋子開(kāi)始時(shí)位于第0站,棋手拋擲均勻硬幣走跳棋游戲.若擲出正面,棋子向前跳出一站;若擲出反面,棋子向前跳出兩站,直到跳到第99站(勝利大本營(yíng))或第100站(失敗集中營(yíng))是,游戲結(jié)束.設(shè)棋子跳到第n站的概率為.
(1)求的值;
(2)證明:;
(3)求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
是否存在,使得,按照某種順序成等差數(shù)列?若存在,請(qǐng)確定的個(gè)數(shù);若不存在,請(qǐng)說(shuō)明理由;
求實(shí)數(shù)與正整數(shù),使得在內(nèi)恰有個(gè)零點(diǎn).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com