【題目】在平面四邊形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD,將△ABD沿BD折起,使得平面ABD⊥平面BCD,如圖.
(1)求證:AB⊥CD;
(2)若M為AD中點,求直線AD與平面MBC所成角的正弦值.
【答案】(1)證明:∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB平面ABD,AB⊥BD,
∴AB⊥平面BCD,又CD平面BCD,∴AB⊥CD.
(2)解:建立如圖所示的空間直角坐標系.
∵AB=BD=CD=1,AB⊥BD,CD⊥BD,
∴B(0,0,0),C(1,1,0),A(0,0,1),D(0,1,0),M.
∴=(0,1,﹣1),=(1,1,0),=.
設(shè)平面BCM的法向量=(x,y,z),則,
令y=﹣1,則x=1,z=1.
∴=(1,﹣1,1).
設(shè)直線AD與平面MBC所成角為θ.
則sinθ=|cos<,>|===.
【解析】(1)利用面面垂直的性質(zhì)定理即可得出;
(2)建立如圖所示的空間直角坐標系.設(shè)直線AD與平面MBC所成角為θ,利用線面角的計算公式sinθ=|cos<,>|=即可得出.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=logm(m>0且m≠1),
(I)判斷f(x)的奇偶性并證明;
(II)若m=,判斷f(x)在(3,+∞)的單調(diào)性(不用證明);
(III)若0<m<1,是否存在β>α>0,使f(x)在[α,β]的值域為[logmm(β-1),logm(α-1)]?若存在,求出此時m的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:①定義在上的函數(shù)滿足,則一定不是上的減函數(shù);
②用反證法證明命題“若實數(shù),滿足,則都為0”時,“假設(shè)命題的結(jié)論不成立”的敘述是“假設(shè)都不為0”;
③把函數(shù)的圖象向右平移個單位長度,所得到的圖象的函數(shù)解析式為;
④“”是“函數(shù)為奇函數(shù)”的充分不必要條件.
其中所有正確命題的序號為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點 處有一個水聲監(jiān)測點,另兩個監(jiān)測點 分別在 的正東方向 處和 處.某時刻,監(jiān)測點 收到發(fā)自目標 的一個聲波, 后監(jiān)測點 后監(jiān)測點 相繼收到這一信號,在當時的氣象條件下,聲波在水中的傳播速度是 .
(1)設(shè) 到 的距離為 ,用 分別表示 到 的距離,并求 的值;
(2)求目標 的海防警戒線 的距離(精確到 ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知雙曲線E:﹣=1(a>0,b>0)的兩條漸近線分別為l1:y=2x,l2:y=﹣2x.
(1)求雙曲線E的離心率;
(2)如圖,O為坐標原點,動直線l分別交直線l1 , l2于A,B兩點(A,B分別在第一、第四象限),且△OAB的面積恒為8,試探究:是否存在總與直線l有且只有一個公共點的雙曲線E?若存在,求出雙曲線E的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一段時間內(nèi),分5次測得某種商品的價格x(萬元)和需求量y(t)之間的一組數(shù)據(jù)為:
1 | 2 | 3 | 4 | 5 | |
價格x | 1.4 | 1.6 | 1.8 | 2 | 2.2 |
需求量y | 12 | 10 | 7 | 5 | 3 |
已知,
(1)畫出散點圖;
(2)求出y對x的線性回歸方程;
(3)如價格定為1.9萬元,預(yù)測需求量大約是多少?(精確到0.01 t).
參考公式: .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知A(2,2),B(5,3),C(3,-1).
(1)求△ABC的外接圓的方程;
(2)若點M(a,2)在△ABC的外接圓上,求a的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com