已知圓C1:與圓C2:相交于A、B兩點,
(1)求公共弦AB所在的直線方程;
(2)求圓心在直線上,且經(jīng)過A、B兩點的圓的方程.
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知⊙和點.
(Ⅰ)過點向⊙引切線,求直線的方程;
(Ⅱ)求以點為圓心,且被直線截得的弦長為4的⊙的方程;
(Ⅲ)設(shè)為(Ⅱ)中⊙上任一點,過點向⊙引切線,切點為. 試探究:平面內(nèi)是否存在一定點,使得為定值?若存在,請舉出一例,并指出相應(yīng)的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知直線l:y=x,圓C1的圓心為(3,0),且經(jīng)過(4,1)點.
(1)求圓C1的方程;
(2)若圓C2與圓C1關(guān)于直線l對稱,點A、B分別為圓C1、C2上任意一點,求|AB|的最小值;
(3)已知直線l上一點M在第一象限,兩質(zhì)點P、Q同時從原點出發(fā),點P以每秒1個單位的速度沿x軸正方向運動,點Q以每秒個單位沿射線OM方向運動,設(shè)運動時間為t秒.問:當(dāng)t為何值時直線PQ與圓C1相切?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知平面直角坐標(biāo)系中O是坐標(biāo)原點,,圓是的外接圓,過點(2,6)的直線為。
(1)求圓的方程;
(2)若與圓相切,求切線方程;
(3)若被圓所截得的弦長為,求直線的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)在平面直角坐標(biāo)系中,是拋物線的焦點,是拋物線上位于第一象限內(nèi)的任意一點,過三點的圓的圓心為,點到拋物線的準(zhǔn)線的距離為.(Ⅰ)求拋物線的方程;(Ⅱ)是否存在點,使得直線與拋物線相切于點若存在,求出點的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分14分)
已知直線,圓.
(Ⅰ)證明:對任意,直線與圓恒有兩個公共點.
(Ⅱ)過圓心作于點,當(dāng)變化時,求點的軌跡的方程.
(Ⅲ)直線與點的軌跡交于點,與圓交于點,是否存在的值,使得?若存在,試求出的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題8分)
已知直線(為參數(shù)),圓(為參數(shù)).
(Ⅰ)當(dāng)時,試判斷直線與圓的位置關(guān)系;
(Ⅱ)若直線與圓截得的弦長為1,求直線的普通方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓C過點(1,0),且圓心在軸的正半軸上,直線l:y=x-1被該圓所截得的弦長為2,求圓C的標(biāo)準(zhǔn)方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com