【題目】在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù),),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求直線的普通方程與曲線的直角坐標(biāo)方程;

(2)若直線與曲線交于、兩點(diǎn),求的最小值.

【答案】(1),;(2)

【解析】分析:(1)將參數(shù)方程利用代入法消去參數(shù)可得直線的普通方程利用 即可得曲線的直角坐標(biāo)方程;(2)先證明直線過定點(diǎn),點(diǎn)在圓的內(nèi)部.當(dāng)直線與線段垂直時(shí),取得最小值利用勾股定理可得結(jié)果..

詳解(1)將為參數(shù),)消去參數(shù),

得直線,,即.

代入,得,

即曲線的直角坐標(biāo)方程為.

(2)設(shè)直線的普通方程為,其中,又,

,則直線過定點(diǎn),

∵圓的圓心,半徑,,

故點(diǎn)在圓的內(nèi)部.

當(dāng)直線與線段垂直時(shí),取得最小值,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知某地每單位面積菜地年平均使用氮肥量x(單位:kg)與每單位面積蔬菜年平均產(chǎn)量Y(單位:t)之間的關(guān)系有如下數(shù)據(jù):

年份

2000

2001

2002

2003

2004

2005

2006

2007

x/kg

70

74

80

78

85

92

90

95

Y/t

5.1

6.0

6.8

7.8

9.0

10.2

10.0

12.0

年份

2008

2009

2010

2011

2012

2013

2014

x/kg

92

108

115

123

130

138

145

Y/t

11.5

11.0

11.8

12.2

12.5

12.8

13.0

(1)xY之間的相關(guān)系數(shù),并檢驗(yàn)是否線性相關(guān);

(2)若線性相關(guān),求每單位面積蔬菜年平均產(chǎn)量Y與每單位面積菜地年平均使用氮肥量x之間的回歸直線方程,并估計(jì)每單位面積菜地年平均使用氮肥150 kg時(shí),每單位面積蔬菜的年平均產(chǎn)量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域?yàn)?/span>的函數(shù)(常數(shù)為自然對(duì)數(shù)的底數(shù)).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求實(shí)數(shù)的最大整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】
(1)(坐標(biāo)系與參數(shù)方程選做題)曲線C的直角坐標(biāo)方程為x2+y2﹣2x=0,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立積坐標(biāo)系,則曲線C的極坐標(biāo)方程為
(2)(不等式選做題)在實(shí)數(shù)范圍內(nèi),不等式|2x﹣1|+|2x+1|≤6的解集為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在三棱柱ABC﹣A1B1C1中,已知AB=AC=AA1= ,BC=4,點(diǎn)A1在底面ABC的投影是線段BC的中點(diǎn)O.

(1)證明在側(cè)棱AA1上存在一點(diǎn)E,使得OE⊥平面BB1C1C,并求出AE的長;
(2)求平面A1B1C與平面BB1C1C夾角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內(nèi),西紅柿市場銷售價(jià)與上市時(shí)間的關(guān)系用圖(1)的一條折線表示;西紅柿的種植成本與上市時(shí)間的關(guān)系用圖(2)的拋物線段表示.

(1)寫出圖(1)表示的市場售價(jià)與時(shí)間的函數(shù)關(guān)系式寫出圖(2)表示的種植成本與時(shí)間的函數(shù)關(guān)系式

(2)認(rèn)定市場售價(jià)減去種植成本為純收益,問何時(shí)上市的西紅柿收益最大?(注:市場售價(jià)和種植成本的單位:元/kg,時(shí)間單位:天.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,已知
(1)求證:tanB=3tanA;
(2)若cosC= ,求A的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知各項(xiàng)均為正數(shù)的兩個(gè)數(shù)列{an}和{bn}滿足:an+1= ,n∈N* ,
(1)設(shè)bn+1=1+ ,n∈N*,求證:數(shù)列{ }是等差數(shù)列;
(2)設(shè)bn+1= ,n∈N*,且{an}是等比數(shù)列,求a1和b1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}前三項(xiàng)的和為﹣3,前三項(xiàng)的積為8.
(1)求等差數(shù)列{an}的通項(xiàng)公式;
(2)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.

查看答案和解析>>

同步練習(xí)冊答案