【題目】某企業(yè)在精準扶貧行動中,決定幫助一貧困山區(qū)將水果運出銷售.現(xiàn)有8輛甲型車和4輛乙型車,甲型車每次最多能運6噸且每天能運4次,乙型車每次最多能運10噸且每天能運3次,甲型車每天費用320元,乙型車每天費用504元.若需要一天內(nèi)把180噸水果運輸?shù)交疖囌荆瑒t通過合理調(diào)配車輛,運送這批水果的費用最少為(

A.2400B.2560C.2816D.4576

【答案】B

【解析】

設(shè)甲型車,乙型車,運送這批水果的費用為,依題意列出所滿足的不等式組和目標函數(shù),然后作出可行域,平移直線,根據(jù)圖形得到最優(yōu)解,代入最優(yōu)解的坐標即可得到答案.

設(shè)甲型車,乙型車,運送這批水果的費用為,

,目標函數(shù),

作出不等式組所表示的平面區(qū)域,如圖所示的陰影部分:

作直線,并平移,分析可得當直線過點,取得最小值,

.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】唐代詩人李頎的詩《古從軍行》開頭兩句說:“白日登山望烽火,黃昏飲馬傍交河.”詩中隱含著一個有趣的數(shù)學問題一“將軍飲馬”問題,即將軍在觀望烽火之后從山腳下某處出發(fā),先到河邊飲馬后再回軍營,怎樣走才能使總路程最短?在平面直角坐標系中,設(shè)軍營所在區(qū)域為,若將軍從點處出發(fā),河岸線所在直線方程為,并假定將軍只要到達軍營所在區(qū)域即回到軍營,則“將軍飲馬”的最短總路程為( ).

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 是指大氣中直徑小于或等于25微米的顆粒物,也稱為可吸入肺顆粒物.我國標準采用世衛(wèi)組織設(shè)定的最寬限值,即日均值在35微克/立方米以下空氣質(zhì)量為一級;在35微克/立方米~75微克/立方米之間空氣質(zhì)量為二級;在75微克/立方米以上空氣質(zhì)量為超標.某試點城市環(huán)保局從該市市區(qū)2015年全年每天的監(jiān)測數(shù)據(jù)中隨機抽取15天的數(shù)據(jù)作為樣本,監(jiān)測值如莖葉圖所示(十位為莖,個位為葉)

1)求中位數(shù).

2)以這15天的日均值來估計一年的空氣質(zhì)量情況,則一年(360天計算)中平均有多少天的空氣質(zhì)量達到一級或二級.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓 的離心率為,且過點是橢圓的左、右頂點,直線點且與軸垂直.

1)求橢圓的標準方程;

2)設(shè)是橢圓上異于的任意一點,作軸于點,延長到點使得,連接并延長交直線點,點為線段的中點,判斷直線與以為直徑的圓的位置關(guān)系,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】空氣質(zhì)量指數(shù)AQI是一種反映和評價空氣質(zhì)量的方法,AQI指數(shù)與空氣質(zhì)量對應如表所示:

AQI

0~50

51~100

101~150

151~200

201~300

300以上

空氣質(zhì)量

優(yōu)

輕度污染

中度污染

重度污染

嚴重污染

如圖是某城市2018年12月全月的AQI指數(shù)變化統(tǒng)計圖:

根據(jù)統(tǒng)計圖判斷,下列結(jié)論正確的是( 。

A. 整體上看,這個月的空氣質(zhì)量越來越差

B. 整體上看,前半月的空氣質(zhì)量好于后半個月的空氣質(zhì)量

C. 從AQI數(shù)據(jù)看,前半月的方差大于后半月的方差

D. 從AQI數(shù)據(jù)看,前半月的平均值小于后半月的平均值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個數(shù)學意義上分形的生成是基于一個不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學不僅讓人們感悟到科學與藝木的融合,數(shù)學與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學方法論意義.如圖,由波蘭數(shù)學家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個實心三角形,沿三角形的三邊中點連線,將它分成4個小三角形,去掉中間的那一個小三角形后,對其余3個小三角形重復上述過程逐次得到各個圖形.

若在圖④中隨機選。c,則此點取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,PA⊥底面ABCD,ADAB,ABDC,ADDCAP2,AB1,點E為棱PC的中點.

(1)證明:BEDC;

(2)求直線BE與平面PBD所成角的正弦值;

(3)F為棱PC上一點,滿足BFAC,求二面角FABP的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐PABCD中,已知,點QAC中點,底面ABCD,,點MPC的中點.

1)求直線PB與平面ADM所成角的正弦值;

2)求二面角D-AM-C的正弦值;

3)記棱PD的中點為N,若點Q在線段OP上,且平面ADM,求線段OQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,曲線C的參數(shù)方程為(t為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線的極坐標方程為

(1)C的普通方程和的直角坐標方程;

(2)C上的點到距離的最大值.

查看答案和解析>>

同步練習冊答案