.(本小題滿分14分)
已知數(shù)列
,
,其中
是方程
的兩個(gè)根.
(1)證明:對(duì)任意正整數(shù)
,都有
;
(2)若數(shù)列
中的項(xiàng)都是正整數(shù),試證明:任意相鄰兩項(xiàng)的最大公約數(shù)均為1;
(3)若
,證明:
。
證明:(1)
是方程
的兩個(gè)根,
故對(duì)任意正整數(shù)
,
故
;
(2)由(1)與更相減損術(shù)可得:對(duì)任意正整數(shù)
,
故命題成立;
(3)
是方程
的兩個(gè)根且
,故
由
可得:
故
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分8分)計(jì)算
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.(本題滿分12分)已知函數(shù)
(1)求
時(shí)
的取值范圍;
(2)若
且
對(duì)任意
成立;
(ⅰ)求證
是等比數(shù)列;
(ⅱ)令
,求證
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
滿足:
,其中
為數(shù)列
的前
項(xiàng)和.
(1)試求數(shù)列
的通項(xiàng)公式;
(2)設(shè)
,數(shù)列
的前
項(xiàng)和為
,求證
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知{
an}是一個(gè)公差大于0的等差數(shù)列,且滿足
a3a6=55,
a2+
a7=16.
(1)求數(shù)列{
an}的通項(xiàng)公式;
(2)若數(shù)列{
an}和數(shù)列{
bn}滿足等式:
,求數(shù)列{
bn}的前
n項(xiàng)和S
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
) (本題滿分14分) 設(shè)等差數(shù)列{
an}的首項(xiàng)
a1為
a,前
n項(xiàng)和為
Sn.
(Ⅰ) 若
S1,
S2,
S4成等比數(shù)列,求數(shù)列{
an}的通項(xiàng)公式;
(Ⅱ) 證明:
n∈N*,
Sn,
Sn+1,
Sn+2不構(gòu)成等比數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知數(shù)列
的相鄰兩項(xiàng)
是關(guān)于
的方程
的兩根,且
(1)求證:數(shù)列
是等比數(shù)列;
(2)求數(shù)列
的前
項(xiàng)和
;
(3)若
對(duì)任意的
都成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知數(shù)列
的前
項(xiàng)和
,對(duì)于任意的
,都滿足
,
且
,則
等于( )
查看答案和解析>>