【題目】某地區(qū)高考實行新方案,規(guī)定:語文、數(shù)學和英語是考生的必考科目,考生還須從物理、化學、生物、歷史、地理和政治六個科目中選出了三個科目作為選考科目若一名學生從六個科目中選出了三個科目作為選考科目,則稱該學生的選考方案確定;否則,稱該學生選考方案待確定.例如,學生甲選擇物理、化學和生物三個選考科目,則學生甲的選考方案確定,“物理、化學和生物為其選考方案.

某學校為了了解高一年級420名學生選考科目的意向,隨機選取30名學生進行了一次調查,統(tǒng)計選考科目人數(shù)如下表:

試估計該學校高一年級確定選考生物的學生有多少人?

寫出選考方案確定的男生中選擇物理、化學和地理的人數(shù)(直接寫出結果)

從選考方案確定的男生中任選2名,試求出這2名學生選考科目完全相同的概率

【答案】(Ⅰ)126;(Ⅱ)選考方案確定的男生中,選擇“物理、化學和地理”的人數(shù)是2人;(Ⅲ) .

【解析】試題分析:分別由表得男生和女生確定選考生物的人數(shù),得到樣本的比例乘以總數(shù)即可;

由表易知選考方案確定的男生中,選擇“物理、化學和地理”的人數(shù)是2人;

(Ⅲ)由數(shù)據(jù)可知,已確定選考科目的男生共6人.其中有3人選擇“物理、化學和生物”,記為, , ;有1人選擇“物理、化學和歷史”,記為;有2人選擇“物理、化學和地理”,記為, ,用列舉法將所有基本事件表示來求概率即可.

試題解析:

(Ⅰ)由數(shù)據(jù)可知,男生確定選考生物的學生有人,女生確定選考生物的學生有人,該學校高一年級有人.

(Ⅱ)選考方案確定的男生中,選擇“物理、化學和地理”的人數(shù)是2人.

(Ⅲ)由數(shù)據(jù)可知,已確定選考科目的男生共6人.其中有3人選擇“物理、化學和生物”,記為 , ;有1人選擇“物理、化學和歷史”,記為;有2人選擇“物理、化學和地理”,記為

從已確定選考科目的男生中任選2人,有, , , , , , , , , , , ,共15種選法.兩位學生選考科目完全相同的選法種數(shù)有, , , ,共4種選法.

設事件:從已確定選考科目的男生中任選出2人,這兩位學生選考科目完全相同.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左右焦點分別為,若橢圓上一點滿足,過點的直線與橢圓交于兩點.

(1)求橢圓的方程;

(2)過點軸的垂線,交橢圓,求證:存在實數(shù),使得.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線為參數(shù)),以坐標原點為極點, 軸的正半軸為極軸建立極坐標系,曲線.

(1)求曲線被直線截得的弦長;

(2)與直線垂直的直線與曲線相切于點,求點的直線坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,過點的直線與圓相交于兩點,過點且與垂直的直線與圓的另一交點為

(1)當點坐標為時,求直線的方程;

(2)求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),若處取極大值,且極大值為7,在處取極小值.

(1)求a,b,c的值;

(2)求函數(shù)在[0, 4]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本題16分)某鄉(xiāng)鎮(zhèn)為了進行美麗鄉(xiāng)村建設,規(guī)劃在長為10千米的河流OC的一側建一條觀光帶,觀光帶的前一部分為曲線段OAB,設曲線段OAB為函數(shù),(單位:千米)的圖象,且曲線段的頂點為;觀光帶的后一部分為線段BC,如圖所示.

(1)求曲線段OABC對應的函數(shù)的解析式;

(2)若計劃在河流OC和觀光帶OABC之間新建一個如圖所示的矩形綠化帶MNPQ,綠化帶由線段MQQPPN構成,其中點P在線段BC上.當OM長為多少時,綠化帶的總長度最長?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知偶函數(shù)的定義域為,值域為

(1)求實數(shù)的值;

(2)若,求實數(shù)的值;

(3)若,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商場舉行有獎促銷活動,顧客購買一定金額的商品后即可抽獎,抽獎方法是:從裝有2個紅球1個白球的甲箱與裝有2個紅球2個白球的乙箱中,各隨機摸出1個球,若摸出的2個球都是紅球則中獎,否則不中獎.

)用球的標號列出所有可能的摸出結果;

)有人認為:兩個箱子中的紅球比白球多,所以中獎的概率大于不中獎的概率,你認為正確嗎?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

如圖,四邊形ABCD為正方形,QA⊥平面ABCD,PD∥QAQA=AB=PD

I)證明:PQ⊥平面DCQ

II)求棱錐Q-ABCD的體積與棱錐P-DCQ的體積的比值.

查看答案和解析>>

同步練習冊答案