設α,β,γ,α1,β1分別為空間中不同的平面,下列四個命題中正確命題的個數(shù)為(  )
(1)若α⊥γ,β⊥γ,則α∥β
(2)若α⊥β,β⊥γ,則α⊥γ
(3)若α∥α1,β∥β1,α⊥β則α1⊥β1
(4)若直線l在平面α內的射影是直線l1,直線m⊥l1,則m⊥l.
分析:利用面面平行與垂直的判定定理和性質定理及三垂線定理即可判斷出結論.
解答:解:(1)若α⊥γ,β⊥γ,則α∥β或α∩β=m,故不正確;
(2)若α⊥β,β⊥γ,則α∥γ或α∩γ=m,故不正確;
(3)設α1、β1的法向量分別為
u
,
v
,
∵α∥α1,β∥β1,α⊥β,∴
u
v
,∴α1⊥β1.故正確;
(4)若m?α,根據(jù)三垂線定理可知m⊥l.正確,但本題沒有明確m?α,故不一定正確.
綜上可知:只有(3)正確.
故選A.
點評:熟練掌握面面平行與垂直的判定定理和性質定理及三垂線定理是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設向量
a
b
滿足|
a
|=1,|
b
|=
2
,|3
a
+
b
|=4
,則|3
a
-2
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
13
x3-ax2-3a2x+1 (a>0)

(I)求f′(x)的表達式;
(Ⅱ)求函數(shù)f(x)的單調區(qū)間、極大值和極小值;
(Ⅲ)若x∈[a+1,a+2]時,恒有f′(x)>-3a,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù),其中常數(shù)a>1,f(x)=
13
x3-(1+a)x2+4ax+24a
(Ⅰ)討論f(x)的單調性;
(Ⅱ)若當x≥0時,f(x)>0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=
x2x≤0
f(x-1)x>0
,則函數(shù)g(x)=f(x)-x的零點的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設i是虛數(shù)單位,z=1+i,
.
z
為復數(shù)z的共軛復數(shù),則z•
.
z
+|
.
z
|-1=( 。
A、
2
+1
B、
2
+3
C、2
2
-1
D、2
2
+1

查看答案和解析>>

同步練習冊答案