已知左焦點為的橢圓過點.過點分別作斜率為的橢圓的動弦,設(shè)分別為線段的中點.
(1)求橢圓的標準方程;
(2)若為線段的中點,求;
(3)若,求證直線恒過定點,并求出定點坐標.

(1);(2);(3)證明過程詳見解析,.

解析試題分析:本題主要考查橢圓的標準方程和幾何性質(zhì)、直線的方程、直線的斜率、中點坐標等基礎(chǔ)知識,考查數(shù)形結(jié)合思想,考查運算求解能力、綜合分析和解決問題的能力.第一問,先利用左焦點坐標得右焦點坐標,然后利用定義,求得,而,得,得出結(jié)論,橢圓為;(2)先將點坐標代入橢圓,兩者作差得,而代入得,利用韋達定理求,同理求,用坐標求,用點和點斜式寫出直線方程,利用化簡,可分析過定點.
試題解析:(1)由題意知設(shè)右焦點
       2分

橢圓方程為         4分
(2)設(shè) 則  ①  ②      6分
② ①,可得                       8分
(3)由題意,設(shè)
直線,即 代入橢圓方程并化簡得

                             10分
同理                         11分
時, 直線的斜率
直線的方程為
 又 化簡得 此時直線過定點(0,)   13分
時,直線即為軸,也過點(0,
綜上,直線過定點.                                     14分
考點:1.橢圓的定義;2.中點弦的解決方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在坐標原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(A,B不是左右頂點),且以AB為直徑的圓過橢圓C的右頂點。求證: 直線l過定點,并求出該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓C的中心在原點,焦點F在軸上,離心率,點在橢圓C上.
(1)求橢圓的標準方程;
(2)若斜率為的直線交橢圓、兩點,且、、成等差數(shù)列,點M(1,1),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

以點F1(-1,0),F(xiàn)2(1,0)為焦點的橢圓C經(jīng)過點(1,)。
(I)求橢圓C的方程;
(II)過P點分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知圓,圓,動圓與已知兩圓都外切.
(1)求動圓的圓心的軌跡的方程;
(2)直線與點的軌跡交于不同的兩點,的中垂線與軸交于點,求點的縱坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本小題滿分12分)已知圓,圓,動圓與圓外切并且與圓內(nèi)切,圓心的軌跡為曲線
(Ⅰ)求的方程;
(Ⅱ)是與圓,圓都相切的一條直線,與曲線交于,兩點,當圓的半徑最長是,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的右焦點為,上頂點為B,離心率為,圓軸交于兩點
(Ⅰ)求的值;
(Ⅱ)若,過點與圓相切的直線的另一交點為,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標系中,點到兩點的距離之和等于4,設(shè)點的軌跡為,直線交于兩點.
(1)寫出的方程;
(2)若點在第一象限,證明當時,恒有.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知橢圓的長軸兩端點分別為是橢圓上的動點,以為一邊在軸下方作矩形,使于點,于點

(Ⅰ)如圖(1),若,且為橢圓上頂點時,的面積為12,點到直線的距離為,求橢圓的方程;
(Ⅱ)如圖(2),若,試證明:成等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊答案