(本小題滿分16分)

已知橢圓的離心率為,直線與橢圓相切.

(1)求橢圓的方程;

(2)設(shè)橢圓的左焦點(diǎn)為,右焦點(diǎn)為,直線過點(diǎn)且垂直與橢圓的長(zhǎng)軸,動(dòng)直線垂直于直線于點(diǎn),線段的垂直平分線交于點(diǎn),求點(diǎn)的軌跡的方程;

(3)若,上不同的點(diǎn),且,求實(shí)數(shù)的取值范圍.

(本小題滿分16分)

解:(1)因?yàn)?sub>,所以,

      橢圓的方程可設(shè)為·····································2分

      與直線方程聯(lián)立,消去,可得,

      因?yàn)橹本與橢圓相切,所以,

      又因?yàn)?sub>,所以,

      所以,橢圓的方程為;····································4分

 (2)由題意可知,,

      又為點(diǎn)到直線的距離,·······································5分

        所以,點(diǎn)到直線的距離與到點(diǎn)的距離相等,即點(diǎn)的軌跡是以直線為準(zhǔn)線,點(diǎn)為焦點(diǎn)的拋物線,···········································7分

      因?yàn)橹本的方程為,點(diǎn)的坐標(biāo)為,

      所以,點(diǎn)的軌跡的方程為;································9分

 (3)由題意可知點(diǎn)坐標(biāo)為·········································10分

      因?yàn)?sub>,所以,

      即···································11分

      又因?yàn)?sub>

      所以,

      因?yàn)?sub>,所以,····················13分

      方法一:整理可得:

              關(guān)于的方程有不為2的解,所以

                   ,且

              所以,

              解得的取值范圍為.······················16分

      方法二:整理可得:,

              當(dāng)時(shí),

                又因?yàn)?sub>,所以

              當(dāng)時(shí),

              所以,的取值范圍為.····················16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010江蘇卷)18、(本小題滿分16分)

在平面直角坐標(biāo)系中,如圖,已知橢圓的左、右頂點(diǎn)為A、B,右焦點(diǎn)為F。設(shè)過點(diǎn)T()的直線TA、TB與橢圓分別交于點(diǎn)M,其中m>0,

(1)設(shè)動(dòng)點(diǎn)P滿足,求點(diǎn)P的軌跡;

(2)設(shè),求點(diǎn)T的坐標(biāo);

(3)設(shè),求證:直線MN必過x軸上的一定點(diǎn)(其坐標(biāo)與m無關(guān))。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年泰州中學(xué)高一下學(xué)期期末測(cè)試數(shù)學(xué) 題型:解答題

(本小題滿分16分)
函數(shù),(),
A=
(Ⅰ)求集合A;
(Ⅱ)如果,對(duì)任意時(shí),恒成立,求實(shí)數(shù)的范圍;
(Ⅲ)如果,當(dāng)“對(duì)任意恒成立”與“內(nèi)必有解”同時(shí)成立時(shí),求 的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江蘇大豐新豐中學(xué)高二上期中考試文數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)     本題請(qǐng)注意換算單位

某開發(fā)商用9000萬元在市區(qū)購(gòu)買一塊土地建一幢寫字樓,規(guī)劃要求寫字樓每層建筑面積為2000平方米。已知該寫字樓第一層的建筑費(fèi)用為每平方米4000元,從第二層開始,每一層的建筑費(fèi)用比其下面一層每平方米增加100元。

(1)若該寫字樓共x層,總開發(fā)費(fèi)用為y萬元,求函數(shù)y=f(x)的表達(dá)式;

(總開發(fā)費(fèi)用=總建筑費(fèi)用+購(gòu)地費(fèi)用)

(2)要使整幢寫字樓每平方米開發(fā)費(fèi)用最低,該寫字樓應(yīng)建為多少層?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省蚌埠市高二下學(xué)期期中聯(lián)考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題滿分16分)設(shè)命題:方程無實(shí)數(shù)根; 命題:函數(shù)

的值域是.如果命題為真命題,為假命題,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省高一第三階段檢測(cè)數(shù)學(xué)卷 題型:解答題

(本小題滿分16分)

已知函數(shù)f(x)=為偶函數(shù),且函數(shù)yf(x)圖象的兩相鄰對(duì)稱軸間的距離為

(Ⅰ)求f)的值;

(Ⅱ)將函數(shù)yf(x)的圖象向右平移個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)延長(zhǎng)到原來的4倍,縱坐標(biāo)不變,得到函數(shù)yg(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案