分析 由題意可得m,n為ex+a=2x的兩個不等實根,根據導數的幾何意義求出切線方程,即可判斷a的范圍
解答 解:f(x)=ex+a在∈[m,n]上為增函數,
∴f(x)∈[em+a,en+a],
∵函數f(x)=ex+a,x∈[m,n]的值域為[2m,2n],
∴$\left\{\begin{array}{l}{{e}^{m}+a=2m}\\{{e}^{n}+a=2n}\end{array}\right.$,
∴m,n為ex+a=2x的兩個不等實根,
即y=ex,y=2x-a有兩個不同的交點,
設切點為(x0,y0),
∵y′=ex,
∴e${\;}^{{x}_{0}}$=2
∴x0=ln2,
∴y0=2,
∴-a>2-2ln2,
即a<-2+2ln2,
故答案為:(-∞,-2+2ln2).
點評 本題考查了函數的值域和函數的單調性以及函數零點的問題,屬于中檔題
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{3}$d,$\frac{\sqrt{3}}{3}$d | B. | $\frac{\sqrt{3}}{3}$d,$\frac{\sqrt{6}}{3}$d | C. | $\frac{\sqrt{6}}{3}$d,$\frac{\sqrt{3}}{3}$d | D. | $\frac{\sqrt{6}}{3}$d,$\sqrt{3}$d |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | y=2cos2x | B. | y=2sin2x | C. | y=1+sin(2x+$\frac{π}{4}$) | D. | y=cos2x |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | ?x∈(0,π),sinx=tanx | |
B. | 條件p:$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,條件q:$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$,則p是q的必要不充分條件 | |
C. | “?x∈R,x2+x+1>0”的否定是“?x0∈R,x02+x0+1<0” | |
D. | ?θ∈R,函數f(x)=sin(2x+θ)都不是偶函數 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 130 | B. | 65 | C. | 70 | D. | 140 |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | $\frac{5}{6}$ | C. | -$\frac{3}{4}$ | D. | $\frac{6}{5}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com