設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)f(1)>0,求證:
(Ⅰ)方程f(x)=0有實根.
(Ⅱ)-2<
a
b
<-1;設x1,x2是方程f(x)=0的兩個實根,則.
3
3
≤|x1-x2|<
2
3
分析:(Ⅰ)針對a進行分類討論,若a=0,f(0)f(1)≤0顯然與條件矛盾,a≠0時,f(x)=3ax2+2bx+c為二次函數(shù),只需考慮判別式即可;
(Ⅱ)利用根與系數(shù)的關系將(x1-x22轉化成關于
b
a
的二次函數(shù),根據(jù)
b
a
的范圍求出值域即可.
解答:證明:(Ⅰ)若a=0,則b=-c,
f(0)f(1)=c(3a+2b+c)=-c2≤0,
與已知矛盾,
所以a≠0.
方程3ax2+2bx+c=0的判別式△=4(b2-3ac),
由條件a+b+c=0,消去b,得△=4(a2+c2-ac)=4[(a-
1
2
c)
2
+
3
4
c2]>0

故方程f(x)=0有實根.
(Ⅱ)由條件,知x1+x2=-
2b
3a
,x1x2=
c
3a
=-
a+b
3a
,
所以(x1-x22=(x1-x22-4x1x2=
4
9
(
b
a
+
3
2
)2+
1
3

因為-2<
b
a
<-1

所以
1
3
≤(x1-x2)2
4
9

3
3
≤|x1-x2|<
2
3
點評:本題主要考查二次函數(shù)的基本性質、不等式的基本性質與解法,以及綜合運用所學知識分析和解決問題的能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設f(x)=3ax2+2bx+c.若a+b+c=0,f(0)>0,f(1)>0,求證:
(Ⅰ)a>0且-2<
ba
<-1
;
(Ⅱ)方程f(x)=0在(0,1)內有兩個實根.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:a>0且-2<
ba
<-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)•f(1)>0,求證:
(I) -2<
b
a
<-1

(II) 設x1,x2是方程f(x)=0的兩個實根,則
3
3
≤|x1-x2|<
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=3ax2+2bx+c(a≠0),若a+b+c=0,f(0)f(1)>0,求證:
(1)方程f(x)=0有實數(shù)根;
(2)-2<
b
a
<-1;
(3)設x1,x2是方程f(x)=0的兩個實數(shù)根,則
3
3
≤|x1-x2|
3
2

查看答案和解析>>

同步練習冊答案