【題目】已知A(-2,0),B(2,0)為橢圓C的左、右頂點,F(xiàn)為其右焦點,P是橢圓C上異于A,B的動點,且△APB面積的最大值為。

(Ⅰ)求橢圓C的方程;

(Ⅱ)直線AP與橢圓在點B處的切線交于點D,當點P在橢圓上運動時,求證:以BD為直徑的圓與直線PF恒相切.

【答案】(Ⅰ)橢圓C的方程為(Ⅱ)見解析

【解析】

(1)根據(jù)題意得到a,b,c的方程組,解方程組即得橢圓C的方程.(2)求證圓心到直線PF的距離等于|BD|,即證以BD為直徑的圓與直線PF恒相切.

(1)由題意可設(shè)橢圓C的方程為 (a>b>0),F(xiàn)(c,0).

由題意知,解得b=,c=1.

故橢圓C的方程為,離心率為。

(2)證明:由題意可設(shè)直線AP的方程為y=k(x+2)(k≠0)。

則點D坐標為(2,4k),BD中點E的坐標為(2,2k).

設(shè)點P的坐標為,則

所以

因為點F坐標為(1,0),

k=±時,點P的坐標為,直線PF⊥x軸,點D的坐標為(2,±2).

此時以BD為直徑的圓(與直線PF相切.

時,則直線PF的斜率,

所以直線PF的方程為,

E到直線PF的距離

又因為|BD|=4|k|,所以d=|BD|.

故以BD為直徑的圓與直線PF相切.

綜上得,當點P在橢圓上運動時,以BD為直徑的圓與直線PF恒相切.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市根據(jù)地理位置劃分成了南北兩區(qū),為調(diào)查該市的一種經(jīng)濟作物(下簡稱 作物)的生長狀況,用簡單隨機抽樣方法從該市調(diào)查了 500 處 作物種植點,其生長狀況如表:

其中生長指數(shù)的含義是:2 代表“生長良好”,1 代表“生長基本良好”,0 代表“不良好,但仍有收成”,﹣1代表“不良好,絕收”.

(1)估計該市空氣質(zhì)量差的作物種植點中,不絕收的種植點所占的比例;

(2)能否有 99%的把握認為“該市作物的種植點是否絕收與所在地域有關(guān)”?

(3)根據(jù)(2)的結(jié)論,能否提供更好的調(diào)查方法來估計該市作物的種植點中,絕收種植點的比例?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著經(jīng)濟模式的改變,微商和電商已成為當今城鄉(xiāng)一種新型的購銷平臺.已知經(jīng)銷某種商品的電商在任何一個銷售季度內(nèi),沒售出1噸該商品可獲利潤0.5萬元,未售出的商品,每1噸虧損0.3萬元.根據(jù)往年的銷售經(jīng)驗,得到一個銷售季度內(nèi)市場需求量的頻率分布直方圖如圖所示.已知電商為下一個銷售季度籌備了130噸該商品,現(xiàn)以(單位:噸,)表示下一個銷售季度的市場需求量,(單位:萬元)表示該電商下一個銷售季度內(nèi)經(jīng)銷該商品獲得的利潤.

(Ⅰ)視分布在各區(qū)間內(nèi)的頻率為相應(yīng)的概率,求;

Ⅱ)將表示為的函數(shù),求出該函數(shù)表達式;

Ⅲ)在頻率分布直方圖的市場需求量分組中,以各組的區(qū)間中點值(組中值代表該組的各個值,并以市場需求量落入該區(qū)間的頻率作為市場需求量取該組中值的概率(例如,則取的概率等于市場需求量落入的頻率),的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中,,為邊的中點,將沿直線翻折成,若是線段的中點,則在翻折過程中,下列命題:

①線段的長是定值;

②存在某個位置,使;

③點的運動軌跡是一個圓;

④存在某個位置,使得

正確的個數(shù)是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)是單調(diào)減函數(shù),且為偶函數(shù).

(1)求的解析式;

(2)討論的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標系與參數(shù)方程

在直角坐標系xOy中,曲線的參數(shù)方程為為參數(shù)),M上的動點,P點滿足,點P的軌跡為曲線

I)求的方程;

II)在以O為極點,x軸的正半軸為極軸的極坐標系中,射線的異于極點的交點為A,與的異于極點的交點為B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點滿足: .

1)求動點的軌跡的方程;

2)設(shè)過點的直線與曲線交于兩點,點關(guān)于軸的對稱點為(點與點不重合),證明:直線恒過定點,并求該定點的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年中央電視臺春節(jié)聯(lián)歡晚會分會場之一落戶黔東南州黎平縣肇興侗寨,黔東南州某中學(xué)高二社會實踐小組就社區(qū)群眾春晚節(jié)目的關(guān)注度進行了調(diào)查,隨機抽取80名群眾進行調(diào)查,將他們的年齡分成6段: ,,,, ,得到如圖所示的頻率分布直方圖.問:

(Ⅰ)求這80名群眾年齡的中位數(shù);

(Ⅱ)若用分層抽樣的方法從年齡在中的群眾隨機抽取6名,并從這6名群眾中選派3人外出宣傳黔東南,求選派的3名群眾年齡在的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校課題組為了研究學(xué)生的數(shù)學(xué)成績與學(xué)生細心程度的關(guān)系,在本校隨機調(diào)查了100名學(xué)生進行研究.研究結(jié)果表明:在數(shù)學(xué)成績及格的60名學(xué)生中有45人比較細心,另外15人比較粗心;在數(shù)學(xué)成績不及格的40名學(xué)生中有10人比較細心,另外30人比較粗心.

(I)試根據(jù)上述數(shù)據(jù)完成列聯(lián)表:

(II)能否在犯錯誤的概率不超過0.001的前提下認為學(xué)生的數(shù)學(xué)成績與細心程度有關(guān)系?

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

參考公式:,其中.

查看答案和解析>>

同步練習(xí)冊答案