【題目】某市調(diào)研考試后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀.統(tǒng)計成績后,得到如下的列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優(yōu)秀的概率為.

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

1)請完成上面的列聯(lián)表;

2)根據(jù)列聯(lián)表的數(shù)據(jù),若按99.9%的可靠性要求,能否認(rèn)為“成績與班級有關(guān)系”;

參考公式與臨界值表:.

0.100

0.050

0.025

0.010

0.001

k

2.706

3.841

5.024

6.635

10.828

【答案】1)填表見解析;(2)不能

【解析】

1)由題意求出甲、乙兩班優(yōu)秀的人數(shù),從而可完善列聯(lián)表.

2)根據(jù)列聯(lián)表求出觀測值,根據(jù)觀測值即可判斷.

解:(1)設(shè)甲、乙兩班優(yōu)秀的人數(shù)為,

,解得,

列聯(lián)表如下:

優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

2)根據(jù)列聯(lián)表中的數(shù)據(jù),得到

.

因此按99.9%的可靠性要求,不能認(rèn)為“成績與班級有關(guān)系”.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于任意的復(fù)數(shù),定義運算

1)設(shè)集合{均為整數(shù)},用列舉法寫出集合

2)若,為純虛數(shù),求的最小值;

3)問:直線上是否存在橫坐標(biāo)、縱坐標(biāo)都為整數(shù)的點,使該點對應(yīng)的復(fù)數(shù)經(jīng)運算后,對應(yīng)的點也在直線上?若存在,求出所有的點;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且方程有一根為

1)求;

2)求數(shù)列的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中志愿者部有男志愿者6人,女志愿者4人,這些人要參加元旦聯(lián)歡會的服務(wù)工作. 從這些人中隨機抽取4人負(fù)責(zé)舞臺服務(wù)工作,另外6人負(fù)責(zé)會場服務(wù)工作.

(Ⅰ)設(shè)為事件:“負(fù)責(zé)會場服務(wù)工作的志愿者中包含女志愿者但不包含男志愿者”,求事件發(fā)生的概率.

(Ⅱ)設(shè)表示參加舞臺服務(wù)工作的女志愿者人數(shù),求隨機變量的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中正確命題的個數(shù)是( )

①命題“函數(shù)的最小值不為”是假命題;

②“”是“”的必要不充分條件;③若為假命題,則, 均為假命題;

④若命題, ,則, ;

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(請寫出式子在寫計算結(jié)果)有4個不同的小球,4個不同的盒子,現(xiàn)在要把球全部放入盒內(nèi):

1)共有多少種方法?

2)若每個盒子不空,共有多少種不同的方法?

3)恰有一個盒子不放球,共有多少種放法?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象的對稱軸完全相同,若,則y=g(x)的值域是( 。

A. [-1,2] B. [-1,3] C. [,0,2] D. [0,,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于給定數(shù)列,如果存在實常數(shù)使得對于任意都成立,我們稱數(shù)列M類數(shù)列

1)若,數(shù)列是否為M類數(shù)列?若是,指出它對應(yīng)的實常數(shù);若不是,請說明理由;

2)證明:若數(shù)列M類數(shù)列,則數(shù)列也是M類數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為(t為參數(shù)),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸且取相同的單位長度建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,且直線l經(jīng)過曲線C的左焦點F.

(1)求直線l的普通方程;

(2)設(shè)曲線C的內(nèi)接矩形的周長為L,求L的最大值.

查看答案和解析>>

同步練習(xí)冊答案