已知函數(shù)f(x)=4x2-kx-8在[1,2]上具有單調(diào)性,則k的取值范圍是( 。
A、(-∞,8]∪[16,+∞)
B、[8,16]
C、(-∞,8)∪(16,+∞)
D、[8,+∞)
考點:二次函數(shù)的性質
專題:函數(shù)的性質及應用
分析:先求出函數(shù)的對稱軸,根據(jù)函數(shù)的單調(diào)性,得到不等式,解出即可.
解答: 解:∵對稱軸x=
k
8
,
若函數(shù)f(x)在[1,2]上單調(diào),
k
8
≥2或
k
8
≤1,
解得:k≥16或k≤8,
故選:A.
點評:本題考查了二次函數(shù)的性質,考查了函數(shù)的單調(diào)性,是一道基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,已知正方體ABCD-A1B1C1D1棱長為1,E,F(xiàn)分別為AA1,CD的中點,則四面體D1EBF的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,在四棱錐P-ABCD中,BD⊥PC,AB=BC=2,AD=CD=
7
,PA=
3
,PC=
15
,∠ABC=120°,G為線段PC上的點.
(1)求證:PA⊥面ABCD;
(2)若G滿足
PG
GC
=
3
2
,求證:PC⊥面BGD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設a∈R,函數(shù)f(x)=ex+
a
ex
是奇函數(shù),若曲線y=f(x)的一條切線的斜率是2,則切點的縱坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

關于函數(shù)f(x)=a
x2+1
|x|
(a>0,a≠1),有以下命題:
①函數(shù)圖象關于軸對稱;
②當a>1時,函數(shù)在(1,+∞)上為增函數(shù);
③當0<a<1時,函數(shù)有最大值,且最大值為a2;
④函數(shù)的值域為(a2,+∞).
其中正確命題的序號是
 
.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n2+bn(b為常數(shù)),且對于任意的k∈N*,ak,a2k,a4k構成等比數(shù)列.
(1)求數(shù)列{an}的通項公式;
(2)設數(shù)列{
1
anan+1
}
的前n項和為Tn,求使不等式Tn
3
13
成立的n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

計算定積分:
1
0
xarctanxdx.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

將函數(shù)y=sin(ωx-
π
6
)(ω>0)的圖象向右平移
π
4
個單位長度后,所得圖象與原圖象重合,則ω的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知α是第四象限角,且sin(π+α)=
1
5
,則sin(α-
3
2
π)的值為
 

查看答案和解析>>

同步練習冊答案